Thomas R. Gulledge
William P. Hutzler

Editors

Analytical
Methods
in Software
Engineering
Economics







Thomas R. Gulledge
william P. Hutzler (Eds.)

Analytical Methods

in Software
Engineering Economics

With 45 Figures

Springer-Verlag

Berlin Heidelberg New York
London Paris Tokyo

Hong Kong Barcelona
Budapest



Professor Dr. Thomas R. Gulledge
The Institute of Public Policy
George Mason University

4400 University Drive

Fairfax, VA 22030-4444, USA

Dr. William P. Hutzler
Economic Analysis Center
The MITRE Corporation

7525 Colshire Drive

McLean, VA 22102-3481, USA

ISBN-13: 978-3-642-77797-4 e-ISBN-13: 978-3-642-77795-0
DOI: 10.1007/978-3-642-77795-0

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad-
casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this
publication or parts thereof'is only permitted under the provisions of the German Copyright Law of
September9, 1965, in its version of June 24,1985, and a copyright fee must always be paid. Violations
fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin - Heidelberg 1993
Softcover reprint of the hardcover 1st edition 1993

The use of registered names, trademarks, etc. in this publication does not imply, evenin the absence
of a specific statement, that such names are exempt from the relevant protective laws and regulati-
ons and therefore free for general use.

2142/7130-543210 - Printed on acid-free paper



PREFACE

This volume presents a selection of the presentations
from the first annual conference on Analytical Methods in
Software Engineering Economics held at The MITRE Corporation
in McLean, Virginia. The papers are representative of the
issues that are of interest to researchers in the economics
of information systems and software engineering economics.

The 1990s are presenting software economists with a
particularly difficult set of challenges. Because of budget
considerations, the number of large new software development
efforts is declining. The primary focus has shifted to issues
relating to upgrading and migrating existing systems. In this
environment, productivity enhancing methodologies and tools
are of primary interest.

The MITRE Software Engineering Analysis Conference was
designed to address some of th> new and difficult challenges
that face our profession. The primary objective of the
conference was to address new theoretical and applications
directions in Software Engineering Economics, a relatively
new discipline that deals with the managément and control of
all segments of the software life-cycle. The discipline has
received much visibility in the 1last twenty-five years
because of the size and cost considerations of many software
development and maintenance efforts, particularly in the
Federal Government.

We thank everyone who helped make this conference a
success, especially those who graciously allowed us to
include their work in this volume.

Thomas R. Gulledge
The Institute of Public Policy
George Mason University
Fairfax, Virginia 22030 USA

William P. Hutzler
Economic Analysis Center
The MITRE Corporation
McLean, Virginia 22102 USA
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Economic Analysis of Software Technology Investments

Barry W. Boehm
Defense Advanced Research Projects Agency
University of California, Los Angeles
Computer Science Department
Los Angeles, CA 90024

1. Introduction
1.1 Background
Many large organizations are finding that:

»  Software technology is increasingly critical to their future organizational
performance.

*  Organizational expenditures on software are increasing.

» Investments in software technology provide opportunities to reduce

software costs and increase organizational performance.

The U.S. Department of Defense (DoD) is one such organization. It has

embarked on the development of a DoD Software Technology Strategy
(SWTS)[Boehm91a]j to:

»  Identify its current and future software technology needs.

*  Analyze and adjust its current software technology investment portfolio to
better meet DoD needs.

Formulate alternative DoD software technology investment portfolios,

and analyze them with respect to DoD needs and estimated cost savings.

This paper summarizes one of several analyses undertaken to evaluate
alternative DoD software technology investment portfolios. The analysis estimates the
DoD software cost savings likely to result from alternative levels of DoD investment

and calculates the resulting estimated returns on investment (ROI).

The dollar figures used in this paper represent current and proposed alternative

technology investment and savings figures used at one stage of the development of the
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SWTS. At this point, they are representative of SWTS data and conclusions, but not

necessarily accurate with respect to the final figures to be used in the SWTS.

1.2 Overview

The software technology return-on-investment (ROI) analysis presented in this
paper considers three alternative programs:

1.

A Baseline: No significant DoD investments are undertaken to improve
DoD software technology. DoD would continue to benefit at the current
4% rate of software productivity improvement resulting from commercial-
sector software improvements.

A Current software technology program: Achieving the best results
possible from a program that reflects the current flat-dollar software
technology budgets of most DoD organizations. In then-year dollars, the
Current Program level used in this analysis is around $195M/year
between FY1992 and FY199S5. Its level is $192M in FY1996; this
$192M is extended for each year between FY1997 and FY2008. In 1992
dollars, the resulting 2008 level of investment would be $88M.

An Achievable software technology program, described in further detail in
the SWTS. This program would: increase the DoD software technology
level of investment from $195M to $410M between FY1992 and
FY1997, and apply a 3% growth factor to this $410M baseline thereafter.
By FY2008, this would be $568M in 2008 dollars and $260M in 1992
dollars, using a 5% deflation rate.

The major questions to be answered by the ROI analysis were:

Can the Current Program be justified with respect to the no-investment
Baseline situation?

Can the Achievable Program be justified with respect to the Current
Program?

Can the Achievable Program or the Current Program realize the SWTS

objective of reducing software unit costs by a factor of two in the year
2000?

The ROl analysis is'carried out'by estimating a set of 1992-2008 time series

of technology fractions-of-time-used (FTs) and fractional-savings (FSs) resulting from
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the Current and Achievable software technology programs, and using the model

presented in Section 2 to calculate the resulting cost savings, net present values, and
ROI.1

Section 2 describes the structure of the SWTS ROI model. Section 3 provides
a summary of the inputs used to calculate the ROI results, with rationales relating the
choice of ROI input quantities to the expected stream of software technology results
produced by the Current and Achievable Programs. Section 4 presents and discusses
the resulting estimated DoD software cost savings and ROI results. Section 5 presents
the resulting conclusions.

2. SWTS ROI Model

The SWTS ROI model begins by computing the estimated cost savings
resulting from three major sources: "work avoidance" through software reuse
technology improvements; "working smarter" through process technology
improvements; and "working faster" through improvements in software tools and
environments. These cost savings are calculated for both development and maintenance
from the years 1992 through 2008.2

Achieving the end results of the Current and Achievable software technology
programs requires investment in new software technologies to achieve cost savings.
To assess the potential worth of these investments, two financial measures of merit are
computed. One measure is the ROI mentioned above. The other measure is net

present value (NPV). Both measures account for the time value of money.

IFor a complete definition of net present value and ROI, see section 2.4.

2This analysis has been automated in a model using Microsoft Excel ™ macros by The
Institute for Defense Analyses. The resulting tool provides a set of pull-down menus
that allow the user to rapidly change a number of assumptions underlying the analysis
and obtain graphic outputof the resulting savings. See [BOEHM91b].



The remainder of this section describes the model structure and parameters,
shows algebraic representations of how cost savings are calculated, and provides

examples of how the formulas are applied to the alternative SWTS programs.

2.1 Model Structure and Parameters

The Baseline scenario used as the starting point of the analysis represents the
estimates of the annual level of DoD software expenditure in the absence of any
significant DoD software technology investment. The analysis assumes that for the
initial year, 1992, DoD software expenditure will be $24 billion (B). This estimate is
conservative: 1990 estimates have ranged from $24B to $32B. The analysis also
assumes that this number will increase over time at a 5% rate through the year 2008.
This growth rate was calculated assuming that the annual DoD software output will be
reduced to a growth rate of 4% by DoD budget limitations. This demand growth would
be absorbed by improvements in commercial software technology, which are likely to
continue to produce 4% annual productivity gains. Thus, the Baseline scenario
represents a constant DoD software work force level; the 5% cost growth rate results
from an assumed 5% inflation rate. This estimate is also very conservative. The
analysis assumes that the distribution of this expenditure between development and
maintenance is 30% for development and 70% for maintenance. Using the information

from above, the 1992 baseline would be $7.2B for development and $16.8B for
maintenance,

Table 1 below summarizes these parameters and the sources upon which they
are based.

The estimated effects of the Current and Achievable DoD technology programs
are calculated by adjusting the original cost baseline by annual estimates of the cost
saving effects of work avoidance, working smarter, and working faster on both software
development and maintenance. Note that the manner in which the baseline costs are
computed implies that there will be a 4% gain in productivity whether any of the
initiatives are employed or not. The adjustments to the baseline through work
avoidance;working-smarter;sand-working faster are in addition to such "natural”
productivity trends.



Table 1: Baseline Parameters

Parameter Category Parameter Value or Name Source
Total DoD 1992 Software $24 billion EIA90 ($32B)
Spending AVWKO1 ($31B)
Development/Maintenance Split 30% Development, = BOEHMS],
70% Maintenance EIAS0
Growth Rates:
DoD SW Cost 5% AVWKO1 (7%)
EIA90 (1%)
Productivity Growth 4% MARTINS3,
LEVITANSS
Inflation rate 5%

As noted above, the analysis identifies three sources of cost savings caused by
the Initiative; these are formally described as end product cost avoidance (EPCA),
process cost avoidance (PCA), and process cost reduction (PCR). EPCA represents
cost savings from avoiding the need to write more lines of code: via software reuse,
application generators, commercial off-the-shelf (COTS) software, Ada generics, and
other product-related improvements. PCA represents savings from process-related
improvements that enable projects to avoid costly rework by "working smarter.”
Examples of PCA technology improvements are prototyping and risk management
technology, and those captured by the Software Engineering Institute (SEI) software
process assessment. PCR represents savings from improvements in software
engineering environments (SEEs) and better, more interoperable tools that partially
automate software development and maintenance, enabling people to "work faster" on
those core portions of the software process remaining, after one has eliminated

avoidable product efforts via EPCA and avoidable process efforts via PCA.

Table 2 summarizes the sources of savings used in this analysis.



Table 2: Savings Sources

work avoidance  end product cost EPCA reuse
avoidance

working smarter  process cost avoidance PCA rework avoidance

working faster process cost reduction PCR tools & environments

The analysis is divided into a development and maintenance portion. Cost
savings are determined by the multiplicative product of the fraction of time the

improvements are used and the fraction of savings realized when the improvements are
used.

2.2 Calculating Development Savings

As noted above, the analysis estimates the savings resulting from software
technology improvements for the years 1992 to 2008. For each year and source of
savings (EPCA, PCA, and PCR for both development and maintenance), some value
for FS from the use of technologies and some FT value are postulated. The proportion
of cost avoidance caused by a given source of savings in a given year is calculated by
multiplying FS by FT. The product of FT and FS is then subtracted from 1 and the
result is multiplied by the annual baseline cost to give the annual cost under a software

technology improvement program.

An example may make this computation clear. If one were to estimate the FS
from EPCA in the year 2000 to be 80% and the fraction of software reused rather than
being developed (FT) to be 12%, the resulting savings would be 0.80 * 0.12 = 0.096
or 9.6%. Subtracting this value from 1 gives 0.904, which could be thought of as a
residual cost fraction (RCF), the fraction of costs left after avoidable end-product costs
have been eliminated. Using the baseline development cost for the year 2000, which is
computed (assuming 5% compounded growth from a 1992 value of $7.2B) to be
$10.6B, the new costs would be $10.6B * 0.904 = $9.6B. This means $1B of savings
fromrdevelopment reuse:or EPCAswould:icome in the year 2000. Similar calculations

would be applied sequentially for PCA and PCR savings. For example, the FT and FS
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for PCA in 2000 are estimated to be 75% and 16%, respectively. Thus 0.75 * 0.16 =
0.12 or 12%. The RCF would be 1 - 0.12 = 0.88. Applying the RCF to the $9.6B
yields $8.45B. Similarly for the PCR, FT and FS for 2000 are 75% and 7%,
respectively. The RCF is calculated to be 0.948. Applying this to the $.8.45B yields
$8.01B. The difference between the baseline development estimate, $10.6B, and the
estimated savings from all of the three sources, $8.01B, is the total dollar development
savings, in this case, $2.59B in 2000.

The example above is summarized in Table 3.

Table 3: Algebraic Example of Year-2000 Development EPCA

Savings
Category RCF ADC RADC ADS
EPCA 0904 =1 - $106B $9.6B = $10.6B $1.0B = $10.6B - $9.6B
(0.8 *0.12) * 0.904
PCA 088 =1 - $.6B $845B = $9.6B $1.15B = $9.6B - $8.45B
(0.75 * 0.16) *0.88
PCR 0948 =1 - $845B $8.01B = $8.45B $0.44B = $8.45B - $8.01B
(0.75 * .07) * 0.948
Total $2.59B
ADS
Notes: ADS = annual development savings. RADC = residual annual
development cost. ADC = annual development software cost. RCF = residual
cost fraction; computed as 1 - (FT x FS) for each component of savings.
ADS = ADC - RADC. RADC = ADC x RCF.
2.3 Calculating Maintenance Savings

The analysis also estimates the savings for maintenance resulting from
software technology improvements for the years 1992 to 2008. For each year, FTs and
FSs are estimated. The technologies and processes that cause these savings are listed
below.

« EPCA: (1) use of COTS and (2) the megaprogramming technology

described in the SWTS: Ada generics, domain-specific software

architectures, (DSSAs),.module composition technology, application
generators.



« PCA: (1) improved maintenance process and (2) improved
understandability of software.

« PCR: (1) increased use of tools and environments and (2) better
structured, easy-to-modify software. '

Table 4 presents a similar algebraic example of the maintenance savings for EPCA in
the year 2000. The Baseline annual maintenance software cost is computed to be
$24.8B; the three sources of software technology savings reduce this to $19.1B, for a
total savings of $5.7B.

Table 4: Algebraic Example of Year-2000 Maintenance EPCA

Savings

Category RCF AMC RAMC AMS

EPCA 0872 = 1 - $248B $21.6B = $24.8B $3.2B = $24.8B -
(0.16 * 0.8) *0.872 $21.6B

PCA 091=1-(0.65 $21.6B $19.7B =$21.6B $1.9B = $21.6B -
*0.14) * 0,91 $19.7B.

PCR 097 =1-(0.7 $197B $19.1B = $19.7B $0.6B = $19.7B -
* 0.05) * 0.97 $19.1B

Total $5.7B

AMS

Notes: AMS = annual maintenance savings. RAMC = residual annual
maintenance cost. AMC = annual maintenance software cost. RCF = residual
cost fraction, computed as 1 - (FT x FS) for each component of savings.
AMS = AMC - RAMC. RAMC = AMC x RCF.

2.4 Calculating ROI and NPV

To achieve the software development and maintenance cost savings discussed
above, a substantial investment by the DoD would be required. To assess the potential
worth of such investments, two financial measures of merit are computed. One

measure is the ROI. The other measure is NPV. Both measures are calculated from
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constant dollars and account for time value of money by "discounting” the benefits (in

this case the DoD cost savings) and the costs (i.e., the DoD investment).3

The formula used in the NPV computation can be shown as:

m (S - Ct)
NPV = ot
t=0 (1+d)
where
S; = the cost savings for year ¢.
C; = the dollar value of the investment in year ¢.
d = the discount rate.
m = the number of years over which the calculations are made.

In this case, m = 16, and t = 0 corresponds to the year 1992.

To be consistent with OMB guidelines [OMB72], we assume the discount rate
to be 10%. The resulting NPV figure is the present value (or worth today) of the
stream of savings derived from the stream of investments made over the period of this

analysis.

The ROI computation also is closely related to the NPV figure. The ROI

measure is the ratio of the discounted savings to the discounted costs. Algebraically

Y S

this can be shown as;

t

- 1+d

ROI = %—(——)
>

~ (1+d)

3Constant dollars are used so that, after adjusting for inflation, a dollar in the future has
the,same purchasing,powersassa;dollarsinithe present. Discounted dollars are used so

that, after discounting, a future dollar has the same value to us now as does a dollar in
the present.
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where the variables are defined as above.

The ROI figure used in this analysis is interpreted as the return for a dollar of
investment when adjusted for price-level changes and the time value of money. For
example, if the ROI is computed to be 6, then this figure suggests that for every
constant, time-discounted dollar invested by the government, 6 constant, time-

discounted dollars in savings will be returned.
3. Inputs to the Return on Investment Analysis

This section presents the input estimates used in the ROI analysis and the
rationales for the numerical values estimated. As the ROI model is automated with
adjustable parameters, the effect of alternative estimates can readily be calculated. The
input estimates discussed below are:

1. Reuse (EPCA) inputs.

2.  Working-smarter (PCA) inputs.

3. Working-faster (PCR) inputs.

4.  DoD Baseline software costs.

5. Current and Achievable software technology investment levels.
3.1 Reuse (End Product Cost Avoidance) Inputs

The reuse fraction of time FT (EPCA) represents the fraction of DoD software
reused across all DoD software development or maintenance activitiés that would
otherwise have involved developing or modifying code at the Ada or COBOL level, or
below (e.g., assembly code). As discussed in [BOEHMS81] and elsewhere, there are
various levels of reuse of code, specifications, and other software artifacts that lead to
different levels of savings. For this analysis, FT is defined to cover only situations
where essentially all code in a module is reused, or where coding is avoided by using

very high level languages (VHLLS) or application generators.

For module reuse, extensive measured experience in the NASA Software

Engineering Laboratory has indicated that the average savings fraction FS (EPCA) is
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0.8 [BASILI81, SEID89]. Savings from VHLLs or application generators have

typically varied from 0.5 to 0.9, depending primarily on the maturity of the
technology.

Development. Early gains will come primarily from use of commercial
off-the-shelf (COTS) software, particularly in the Corporate Information Management
(CIM) area. In the mid-90s, module reuse supported by process improvements and
repositories (e.g., STARS, RAPID) will boost reuse. In the late 90s, major gains will
begin from investments in DoD DSSAs and early module-composition
megaprogramming technology. At this point, gains from the reduced-effort Current
Program begin to tail off, while gains from the Achievable Program are estimated to
increase. These comparative trends are estimated to continue through about 2003-2008,
as the additional megaprogramming technology in the Achievable Program matures.
Some factors, particularly cultural inertia and the rapid technical change in underlying

computer architectures will serve as retardants to progress toward complete, reuse-based
software development.

The resulting estimated development EPCA time series are as follows:

Table 5: Estimated Development EPCA Time Series

Current
Prug"gm':n 1902 1994 1996 1998 2000 2002 2004 2006 2008

FT (EPCA) .005 .02 .05 .08 12 15 .18 .20 22
FS (EPCA) .70 75 .78 .80 .80 .80 .80 .80 .80

Achievable
Proeg:-,am 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (EPCA) 005 .02 .06 A2 .20 .30 40 47 52
FS (EPCA) .70 5 78 .80 .82 .84 .86 .87 .88

Maintenance. Maintenance reuse savings will come from two primary
sources:
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Use of COTS software: the net savings will be the difference between the
amount of non-COTS modification that would otherwise have been
needed, and the COTS maintenance fees.

Modification avoidance via megaprogramming technology: initially Ada
generics and similar capabilities, and eventually maintenance via module
replacement based on DSSA and module-composition capabilities, plus
life-cycle gains from VHLLs and application generators. These
modularity-based savings come both from reengineering existing software
and introduction of newly developed module-based software into the
downstream maintenance inventory.

Estimated gains in the early 90s come primarily from replacement of DoD-
unique software inventory by COTS, particularly in the CIM area. As in the

development phase, estimated maintenance gains in the late 90s and 2000s become

larger for the Achievable Program than for the Current Program, because of the

stronger DSSA, VHLL, application generator, and module composition capabilities
made available to DoD via the Achievable Program.

The resulting estimated maintenance EPCA time series are as follows:

Table 6: KEstimated Maintenance EPCA Time Series

Current

Program 1992 1994 1996 1998 2000 2002 2004 2006 2008
FT (EPCA) .02 061 .085 .12 .16 20 22 24 .26
FS@EPCA) .70 .75 .78 80 .80 .80 .80 .80 .80
Achievabl

Program 1992 1994 1996 1998 2000 2002 2004 2006 2008
FT(EPCA) 02 071 .12 .18 25 .32 40 48 .56
FS(EPCA) 70 .75 .78 80 81 .82 83 84 .85
3.2 Working-Smarter (Process Cost Avoidance) Inputs

A quantitative understanding of the distribution of cost across the various

activities involved in the software process is crucial to estimating process cost savings,
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both for process cost avoidance (PCA) and process cost reduction (PCR). The analysis
below is based on a value-chain analysis [PORTERS0] of typical process cost
distributions, based on a sample of 40 DoD software projects [BOEHMS88]. The
potential effects of process and tool improvements on each of the canonical software
development and maintenance activities (requirements analysis, prototyping, design,

etc.) are estimated below, based on their initial value-chain cost distributions.

Table 7 shows the results of the analysis for software development. The first
column shows the current cost distribution across development activities: 4% of
current costs (assuming an overall system design as starting point) go to software
requirements analysis, while 15% goes to coding and related activities such as unit test,
Columns two and three show the potential effects of working-smarter process
improvements. The effort devoted to requirements analysis is increased from 4% to
6%, while the effort devoted to coding activities is decreased from 15% to 7% (reduced
rework caused by better requirements and design, reduced project turbulence because of

better, pre-verified interface definitions, and reduced make-work such as full-scale

critical design review).

Columns four and five show the potential effects of tools and environmental
support to make the remaining essential work go faster. For requirements analysis,
better modeling and specification tools could reduce the 6% figure to 5%. For coding-
related activities, better tools for automating portions of the coding and unit testing
process, and better support of group-coordination and change-effect processing could
reduce the 7% figure to 5%. The final column shows the resulting normalized cost

percentages: both requirements analysis and code would consume 11% of the reduced
total cost.

The total potential working-smarter (or PCA) savings is thus 37% of the
original total. This figure is consistent with [JONES86], which has rework costs
increasing to 50% for very large projects. The subsequent potential working-faster (or
PCR) savings is 30% of the post-PCA costs or 19% of the original total. This figure

is_conservative with respect to_the 33%-50% productivity gains for tool and
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environment support in software cost estimation models such as the Constructive Cost
Model (COCOMO) and Ada COCOMO [BOEHMS81, BOEHMS89].

Table 8 shows the counterpart cost breakdown and potential working-smarter
(PCA) and working-faster (PCR) savings for maintenance. Overall potential PCA

savings are 39%; PCR potential savings are 31% of the remainder, or 19% of the
original total.

Table 7: Potential Software Development Savings - Value
Chain Analysis

Activity Current Work- Remainder  Work- Overall Revised

Cost %  Smarter Faster  Remainder Cost%

Savings Savings
Rqts. 4 +2 6 -1 5 11
Analysis
Prototyping 3 +2 5 -1 4 9
Rqts. Trace 4 -1 3 -1 2 4
Design 12 -1 11 -3 8 i8
Code 15 8 7 2 5 11
Integration 14 -8 6 -1 5 11
& Test
Documen- 15 -8 7 3 4 9
tation
Config. 5 -1 4 2 2 4
Mgmt.
Managemen 16 8 8 2 6 14
t
Other* 12 6 6 3 3 7
Total 100 -37 63 -19 44 100
(30% of
63)

*  "Other" includes project communications, quality assurance functions, training

functions, security management, simulation.

Development Process Cost Avoidance. The fraction of time process
improvements are used, FT (PCA), is estimated as the fraction of the DoD software
performer base that has improvedritself at least one level on the five-level Software

Engineering Institute (SEI) process maturity assessment scale [HUMPHREY89].
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Most contractors and internal DoD software organizations are still at Level 1. The
prospect of using maturity level as a contractor source selection criterion, or recent
directives for internal CIM organizations to use SEI assessments [STRASSMANN91],
will cause relatively rapid early increases in FT (PCA). However, cultural inertia will

still leave some DoD software projects at Level 1 in the year 2008.

Table 8: Potential Software Maintenance Savings - Value Chain

Analysis
Activity Current Work-  Remainder  Work- Overall Revised
Cost %  Smarter Faster Remainder  Cost%
Savings Savings
Rqts. 6 0 6 -1 5 12
Analysis
Proto- 0 +2 2 0 2 5
typing
Rqts. Trace 2 +1 3 -1 2 5
Design 1 3 8 2 6 14
Code 14 1 7 2 5 12
Integration 20 -10 10 3 7 17
& Test
Documen- 16 9 7 -3 4 9
tation
Config. 4 0 4 2 2 5
Mgmt.
Manage- 15 -7 8 2 6 14
ment
Other™ 12 -6 6 3 3 7
Total 100 -39 61 -19 42 100
(31% of
61)

*  "Other" includes project communications, quality assurance functions, training

functions, security management, simulation.

The fractional savings FS (PCA) from working smarter is estimated as a
function of the average number of process maturity levels that organizations developing
DoD software have progressed: " Improving one level of maturity is estimated to

produce an 0.14 savings fraction; two levels, 0.24; three levels, 0.32; and four levels,
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0.37. The SEI is collecting data to provide better quantitative information on the
effects of process maturity on software costs.

The resulting estimated development PCA time series are given in Table 9.
The FT series are the same for the Current and Achievable Programs, as process
maturity adoptions are primarily a function of DoD management initiatives. The FS
are estimated to be considerably higher in the out-years for the Achievable Program,
because of significantly better technology support of tailorable process models, process

programming, prototyping, and knowledge-based risk management aids.

Table 9: Estimated Development PCA Time Series

Current
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCA) .05 25 .50 .65 75 .80 .85 .89 92

FS (PCA) 12 13 14 15 .16 18 .20 22 .24

Achievable
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCA) .05 25 .50 .65 75 .80 85 .89 92
FS (PCA) 12 14 .16 20 24 27 .30 32 34

Maintenance. Estimated FT adoption rates for maintenance process
improvements show significant increases similar to those for development. The
maintenance rates are somewhat lower, since maintenance processes are more difficult
to decouple from their large inventories of existing software. The estimated FS
rework-avoidance savings are lower than development savings for similar reasons, but
this is compensated for by technology contributions to process cost avoidance.
Software understanding and reengineering technology will avoid much of the cost in
software maintenance currently devoted to the process of understanding poorly
structured and poorly explained software. This cost is estimated to be as high as 47%
of the maintenance effort [PARIKH83]. Improving one level of process maturity is
estimated to produce a combined rework=avoidance and understanding-improvement

savings fraction of 0.10; two levels, 0.18; three levels, 0.26, and four levels, 0.34.
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As with development PCA, the FS estimates for the Achievable Program are
considerably higher in the out-years than for the Current Program, because of
significantly better technology support for software understanding and reengineering.

The resulting maintenance PCA time series are given below.

Table 10: Estimated Maintenance PCA Time Series

Current

Program 1992 1994 1996 1998 2000 2002 2004 2006 2008
FT (PCA) .05 20 40 .55 .65 .70 75 .80 .84
FS (PCA) .10 .10 A1 12 .14 .16 17 .18 .19
Achievable

Program 1992 1994 1996 1998 2000 2002 2004 2006 2008
FT (PCA) .05 .20 40 .55 .65 .70 .75 .80 .84
FS (PCA) .10 11 .13 .16 20 25 30 35 .40
3.3 Working-Faster (Process Cost Reduction) Inputs

The fraction of time PCR tools and environments are used FT (PCR) is
estimated as the fraction of the DoD software performer base that has improved itself at
least one level on an ascending computer-aided software engineering (CASE) maturity
hierarchy for tools and environment support. The maintenance PCR savings are also
enhanced by re-engineering technology improvements and by better-structured software
entering the maintenance inventory. The CASE maturity levels and their

corresponding savings fractions FS (PCR) for development and maintenance are given
in Table 11.

Table 11: Levels of Tool and Environment Support

Development  Maintenance

CASE Maturity Level ES (PCR) ES (PCR)
1. Minimal 0.00 0.00
2. 1991 CASE Tools 0.07 0.06
3. Integrated CASE Environment 0.14 0.14
4. Integrated, Fully-Populated CASE Environment 0.23 0.24
S. Proactive CASE Environment 0.30 0.32
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The savings fractions at the lower levels are low because CASE tools are
frequently purchased and installed without the associated tailoring, training, and process
integration needed to make them pay off. In some situations, indiscriminate

purchasing of CASE tools has actually reduced productivity.

Development and Maintenance. The resulting development and
maintenance PCR time series are given in Tables 12 and 13. The comparisons
between the Current Program and Achievable Program are similar to those for PCA;
the estimated FT (PCR) adoption rates are the same, while the estimated FS (PCR)
savings fractions are considerably higher in the out-years because of the significantly

higher levels of DoD-responsive advanced CASE technology.

The FS (PCR) are net savings, which have reduced the gross savings by 0.05,
reflecting the typical 5% added to the cost of doing business for the purchase,
amortization, and maintenance fees for CASE tools and workstations. Thus, the 1992

development savings fraction is not 0.07, as might be expected from Table 11, but
rather 0.02.

Table 12: Estimated Development PCR Time Series

Current
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCR) 15 35 .50 .65 a5 .80 .85 .89 92

FS (PCR) .02 .04 .05 .06 .07 .08 .09 .10 11
Achievable
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCR) 15 .35 .50 65 75 .80 85 .89 92
FS (PCR) 02 .04 .07 11 15 .18 21 .23 25

3.4 DoD Baseline Software Costs

The DoD baseline software cost profile from which savings are calculated is
that discussed in Section 2.1, in which no significant DoD efforts are undertaken to

improve DoD software technology. Past experience indicates that one would expect a
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4% per year general improvement in software productivity to apply to the DoD. The
Baseline scenario limits DoD software demand growth to 4%.

Table 13: Estimated Maintenance PCR Time Series

Current
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCR) .10 30 45 .60 .70 5 .80 .84 .87

FS (PCR) .01 02 .03 .04 .05 .06 .07 .08 .09

Achievable
Program 1992 1994 1996 1998 2000 2002 2004 2006 2008

FT (PCR) .10 .30 45 .60 70 75 .80 .84 .87
FS (PCR) .01 .03 .06 .09 13 17 21 24 27

As discussed in Section 2.1, it was assumed that the DoD will spend $24B in
1992 for software and that this $24B can be separated into development (30%) and
maintenance (70%). A 5% inflation rate is also assumed, yielding a net growth in
DoD software expenditures of 5% per year compounded over the period of the analysis.

The results are shown below in Table 14.

Table 14: Baseline Estimates of DoD Software Expenditures
(Billions of Then-Year Dollars)

$B 1992 1994 1996 1998 2000 2002 2004 2006 2008

Total DoD  $24. 265 292 322 355 391 431 475 524
Software 0

Mainte- 168 185 204 225 248 274 302 333 367
nance
Develop- 7.2 7.9 8.8 96 106 117 129 143 157
ment

Note: In this table, as with all tables that report spreadsheet results, the columns do not
always add or subtract exactly because of rounding.

To account for the price-level changes over time, the estimates of savings and
investments have been deflated to constant 1992 dollars. Hereafter, the results of the

analyses will be presented in both then-year and constant dollars.
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3.5 Investment Levels for Current and Achievable Software
Technology Programs

As described in the introduction to this section, the Current scenario assumes
that the $219M/year level of funding provided in FY1996 for core software

technologies will be continued over the entire time horizon.

The Achievable funding scenario is associated with an enhanced software
technology program described in the SWTS. In then-year dollars, it involves a
significant boost (to $568M) in DoD spending per year for software technologies for
the time period 1992 through 2008. Using a 5% deflation rate, the $568M in 2008

dollars translates to $260M in constant 1992 dollars. The funding profiles are shown
in Table 15.

4, Estimated Savings and ROIs

Figure 1 and Table 16 present the Baseline scenario results. These results
suggest that total DoD spending for software will reach almost $52B by the year 2008.
The maintenance fraction of the $52B total is estimated to be approximately $37B by
2008. The estimated expenditure for software development is $16B by the year 2008.
In light of the planned decline in the DoD budget over the same period of time, if the
software expenditures follow the pattern depicted by Figure 1, software will soon
account for nearly 20% of the total DoD budget. Such out-year estimates may appear

high, but some estimates of future aircraft and ship development costs have allocated
30% of the costs to software.

Figure 2 and Table 17 show the differences between the Baseline (no SWTS
expenditures), the Current Program, and the Achievable Program. The incremental
savings are the difference between the Current and Achievable scenarios. These results
indicate that the Achievable funding scenario generates a stream of savings that are
relatively small in the first several years but increase rapidly in the out years. For
example, we estimate the Achievable Program scenario generates savings of

approximately $38B then-year dollars or $17.5B constant 1992 dollars by the year
2008.
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Annual DoD Software Cost (Then-Year $B)

Total

Maintenance

Ment

T I I I 1 I I 1 I I I 1 I 1 | L
1992 1994 1996 1998 2000 2002 2004 2006 2008
Years
Figure 1: Then-Year Baseline Software Expenditures by Software Life
Cycle
Table 16: Baseline Software Expenditures by Software Life Cycle

Then-Year
Dollars ($B)

1992 1994 1996 1998 2000 2002 2004 2006 2008
Total DoD 240 265 292 322 355 391 431 475 524
Software
Maintenance 16.8 185 204 225 248 274 302 333 367
Development 7.2 7.9 8.8 9.6 10.6 11.7 12.9 14.3 15.7
Constant
1992 Dollars
($B)

1992 1994 1996 1998 2000 2002 2004 2006 2008
Total DoD 240 240 240 240 240 240 240 240 240
Software
Maintenance 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8
Development 72 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2

Note: In this table, as with all tables that report spreadsheet results, the columns do not
always add or subtract exactly because of rounding.
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Figure 2:

Then-Year Total Software Expenditures from Baseline,
Current,
and Achievable Program

Table 17: Software Expenditure Savings from Current
and Achievable Programs
Then-Year Dollars ($B)
199 129 199 199 200 200 200 200 200
2 4 [ 8 0 2 4 6 8
Current Scenario Savings 04 18 36 58 85 11. 14, 17. 20
3 1 3 8
Achievable Scenario Savings 04 20 47 85 13, 18. 24, 31. 38,
3 7 9 3 1
Incremental Savings 00 02 11 27 49 173 10. 14, 17.
8 0 3
Constant 1992 Dollars ($B)
199 199 199 199 200 200 200 200 200
2 4 6 8 Q 2 4 [} 8
Current Scenario Savings 04 16 29 43 57 170 179 87 95
Achievable Scenario Savings 04 18 39 63 90 11 13, 15, 17.
5 9 8 5
Incremental Savings 00 02 09 20 33 45 60 71 19

Note: In this table, as with all tables that report spreadsheet results, the columns do not
always add or subtract exactly because of rounding.
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Figure 3 and Table 18 compare the Baseline scenario costs and the Achievable
scenario costs for the two main stages (development and maintenance) in the software

life cycle. The relative proportion of development and maintenance costs does not

change significantly.

Figure 4 and Table 19 present the difference between software expenditure
under the Baseline and the Achievable scenarios by source of these savings. Recall the
sequential nature of the calculations. Savings are first generated by reuse (EPCA), then
by process improvements (PCA), and finally by tools and environments (PCR). The
largest savings are attributable to reuse (EPCA). For example, in the year 2000
approximately $7B of the $13B then-year dollars saved by the software initiative is

caused by reuse. The PCA (process) source generates about $4B and PCR (tools)
generates about $2B in savings in 2000.

60 —

—— Baseling - (B)
A A R AChiBVabIB - {A) TOta] i B

50

Maintenance - B

Development - B

Total -A

Annual DoD Software Cost (Then-Year $B)

Maintenance - A
Development - A

T 1 1 1 1t 1 1 17 17 17 7 "17T°"1T"717T71"71
1992 1994 1996 1998 2000 2002 2004 2006 2008

Years

Figure 3: Then-Year, Life-Cycle Baseline and Achievable
Software Expenditures
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Table 18: Baseline Versus Achievable Software Expenditure
Savings by Life Cycle

Then-Year
Dollars ($B)

1992 1994 1996 1998 2000 2002 2004 2006 2008
Maintenance 0.3 1.5 33 59 92 128 172 218 269
Savings
Development 0.1 0.5 1.3 2.6 42 5.8 7.7 9.5 11.2
Savings

Total 04 2.0 4.7 85 133 187 249 313 381
Savings

Constant
1992 Dollars
($B)

1992 1994 1996 1998 2000 2002 2004 2006 2008
Maintenance 0.3 14 2.8 4.4 6.2 7.9 96 110 123
Savings
Development 0.1 0.5 1.1 1.9 2.8 3.6 43 4.8 5.1
Savings

Total 04 1.8 3.9 6.3 9.0 11.5 139 15.8 17.5
Savings

Note: In this table, as with all tables that report spreadsheet results, the columns do not
always add or subtract exactly because of rounding.

4.1 NPV and ROI under Current and Achievable Scenarios

The ROI and NPV figures for the Current scenario are presented in Table 20.
We can see that as early as 1994 the investment in software technology is paying back
more than $5 for every $1 invested. By the final year the cumulative ROI indicates
that the ratio of 27:1 is possible. The NPV figures indicate that the value today of the
stream of savings generated by the current set of investments is approximately $34B in
constant-1992 discounted dollars.
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Figure 4: Then-Year Baseline Versus Achievable Software

Expenditure by Source of Savings

Table 19: Baseline Versus Achievable Software Savings by
Source of Savings

Then-Year
Dollars ($B)

1992 1994 1996 1998 2000 2002 2004 2006 2008
EPCA Savings 0.3 1.1 23 42 6.8 10.1 14.5 192 246
PCA Savings 0.1 0.7 1.6 2.8 42 54 6.7 8.0 9.1
PCR Savings 0.0 03 0.7 1.5 24 3.1 3.8 4.1 43
Constant 1992
Dollars ($B)

1992 1994 199 1998 2000 2002 2004 2006 2008
EPCA Savings 03 1.0 1.9 3.1 4.6 6.2 8.1 9.7 113
PCA Savings 0.1 0.6 1.3 2.1 2.8 33 37 4.0 42
PCR Savings 0.0 0.2 0.6 1.1 1.6 1.9 2.1 2.1 2.0

The ROI and NPV figures for the Achievable funding scenario are presented in
Table 21. The cumulative ROI indicates that for every $1 dollar invested, $22 dollars
are returned.. The NPV of this scenario.is.about $54B.
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The ROI for the Achievable Program is smaller then the Current Program
ROIL. However, the Achievable Program generates significantly larger NPV over the
time period analyzed. The NPV and ROI results for both scenarios are summarized in
Table 22. Also, two columns are included to show the difference between the NPV in
the two scenarios and the ROI of the incremental investment. These columns show the
incremental effect of the move from the Current to the Achievable Program. The NPV
column indicates that the additional benefit to the Achievable Program over the Current
Program is $19B. The ROI column indicates that the return on DoD investment that

generates the incremental savings is about 17:1.
4.2 Excursions and Sensitivity Analysis

Three excursions from the Current and Achievable scenarios are presented
below. They are included here to better illuminate some of the underlying assumptions

that generate the results reported above, and the sensitivity of the results to those
assumptions.

The three excursions are the effect on expenditures and savings of a 3%
increase in the growth rate in software demand, the effect on ROI of large decreases in
the predicted FT and FS levels, and the effect of slowing the transfer into use of these
software technologies.

Table 20: ROI and NPV For Current Funding Scenario
(NPV in Millions of Constant-1992 Discounted Dollars)

Year NPV ROI
1992 229 22
1994 2,162 52
1996 5,626 8.5
1998 10,126 12.0
2000 15,241 15.5
2002 20,513 18.9
2004 25,547 219
2006 30,196 24.7
2008 34,417 27.1

Note: NPV reported in
millions of 1992 dollars.
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Table 21: ROI and NPV For Achievable Funding Scenario
(NPV in Millions of Constant-1992 Discounted Dollars)

Year NPV ROI
1992 229 22
1994 2,247 43
1996 6,528 6.7
1998 12,873 9.4
2000 20,721 12.3
2002 29,254 15.2
2004 37,952 17.8
2006 46,252 20.2
2008 53,920 22.3

Note: NPV reported in
millions of 1992 dollars.

4.2.1 Effects of Additional Demand Growth on Software
Expenditure
The results presented here are affected by the assumptions made about the
effects of SWTS on software spending. These results are also influenced by the
assumptions made about the growth in software demand. This section shows one

excursion from the Baseline-Current-Achievable Programs discussed previously.

The excursion shown is to assume in the Baseline case an 8% growth in then-
year dollar expenditure on software. Assuming that inflation remains at 5%, this

results in a 3% annual growth in the overall work force necessary to develop and
maintain DoD software.

Figure 5 and Table 23 show the results of this excursion. Figure 5 can be
compared with Figure 2. A major difference between the two figures is that the
Current Program in Figure 5 shows pronounced cost growth, while in Figure 2 the
-growth is just beginning in the later years. Only the Achievable Program is still able
to reduce then-year spending on software.
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Table 22: ROI and NPV Comparisons between Current Funding and
Achievable Funding Scenarios, in Constant-1992 Discounted Dollars

($M)

Current Achievable Incremental Effect
Year NPV ROI Net PV ROI Net PV ROI
1992 229 2.2 229 22 0
1994 2,162 52 2,247 4.3 86 1.5
1996 5,626 8.5 6,528 6.7 901 3.2
1998 10,126 12.0 12,873 94 2,747 5.5
2000 . 15,241 15.5 20,721 12.3 5,480 8.0
2002 20,513 18.9 29,254 15.2 8,740 10.5
2004 25,547 219 37,952 17.8 12,385 13.0
2006 30,196 24.7 46,252 20.2 16,056 15.2
2008 34,417 27.1 53,920 223 19,503 171

Note: NPV reported in millions of 1992 dollars. Incremental NPVs may
not be the difference between Current and Achievable NPV because of
rounding.

4.2.2 ROI Sensitivity to Decreased Estimates of FT and FS

This section shows the effects on ROI of significant decreases in the FT and
FS savings parameters in the model. The conclusion of this analysis is that, even if
the FT and FS estimates that generate the results shown in the Current and Achievable
scenarios reported above are overestimated by a factor of two, and that the improvement
between Current and Achievable programs is halved, both the Current and Achievable

SWTS investment programs are still a good buy.

This analysis starts with the Current and Achievable scenarios reported above.
Four excursions are calculated. The first excursion hypothesizes that all the FT and FS
improvements between the Current and the Achievable case are too large, and deals
with this by halving the improvement between Current and Achievable Programs. For
example, Table 10 shows the maintenance FS for PCA of 0.14 and 0.20 for the
Current and Achievable programs, respectively. This excursion reduces the 0.20 to
0.17.
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Figure 5: Then-Year Effects of Additional Demand Growth

The second excursion starts with the Current and Achievable Programs, and
assumes that all FT for both programs are too high by a factor of two. From Table 5,
the Development EPCA FT for the Current and Achievable Programs for the year 2000
are 0.12 and 0.20, respectively. In this excursion, they will be reduced to 0.06 and
0.10. This excursion will be used in Section 4.2.3 in the discussion on technology

transfer leverage.
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Table 23: Effects of Additional Demand Growth in Then-Year and

Constant 1992 Dollars ($Billions)

Then-Year
Dollars ($B)

Total DoD 24.0
Software

Current 04
Scenario

Savings

Achievable 0.4
Scenario

Savings

Incremental 0.0
Savings

Constant
1992 Dollars
($B)

1992
Total DoD 240
Software
Current 04
Scenario
Savings
Achievable 04
Scenario
Savings
Incremental 0.0
Savings

1094 1996 1998 2000 2002 2004

28.0 327 38.1 444

1.9 4.0 68 10.6

2.1 53 101 167

0.3 1.3 32 6.1

1994 1996 1998 2000
255 270 287 304

1.7 33 5.1 7.2

1.9 43 76 114

0.2 1.0 24 4.2

51.8

15.0

24.8

9.7

323

9.3

154

6.1

60.4

19.8

349

15.1

2004
342

11.2

19.8

8.6

2006
70.5

25.6

46.4

20.8

2006
36.3

13.2

239

10.7

82.2

327

59.8

27.1

2008
38.5

15.3

28.0

12.7

Note: In this table, as with all tables that report spreadsheet results, the columns do not
always add or subtract exactly because of rounding.

The third excursion starts again with the Current and Achievable Programs,

and assumes that all FS and FT for both programs are too high by a factor of two. For
example, from Table 10, the maintenance PCA FT and FS are 0.65 and 0.14 for the
Current Program, and 0.65 and 0.20 for the Achievable Program. In this excursion,
they will be reduced to 0.325 and 0.07, and 0.325 and 0.10, respectively. This results
in the savings proportions (FT * FS) being reduced by a factor of four. The fourth and
final excursion sequentially applies the reductions for the first and third excursion.

Using the data from Table 10 above, the final values are 0.325 and 0.07, and 0.325 and

0.085, respectively.
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The ROI generated by these excursions are shown in Table 24. The Current,
Achievable, and Incremental ROI in the first line are reproduced from Table 22. The
four excursions are identified numerically. The Incremental ROI for excursion one is
calculated from the original Current Program and the excursion one Achievable
Program, and the incremental ROI for excursion four is based on the Current ROI from
excursion three and the Achievable ROI from excursion four.

These ROI show that the SWTS expenditures are cost-effective even if the FS
and FT estimates are high by a factor of two; and that the Achievable Program is cost-
effective even in the face of an additional halving of the FS and FT improvements from
the Current Program. That is, the worst case Current Program ROI is still 7.5, the
worst case Achievable ROI is 5.1, and the incremental ROI between these two is 2.5.

As these ROI calculations are based on discounted dollars, any ROI greater than 1 is
cost-effective.

Table 24: ROI for FT and FS Decreases

Current Achievable  Incremental
Case Program Program ROI
ROI ROI
Current and Achievable Program 27.1 223 17.1
1. Reduce Achievable FT and FS
Improvements by 50% of Dif- 27.1 18.5 9.0
ference from Current Program
2. Reduce FT Values by 50% 142 12.3 10.2
3. Reduce FT and FS Values by 7.5 6.4 53
50%
4. Apply Both 1 and 3 above 7.5 5.1 25
Note: ROI is cumulative savings over cumulative DoD investment, both in
constant, discounted dollars.
4.2.3 Technology Transfer Leverage

Changes in the FT coefficients show changes in the rate of adoption of SWTS
technology. Case 2 in Figure 24 indicates that a 50% reduction in these adoption rates

corresponds to a roughly 50% reduction in the return on investment in the the Current
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and Achievable Programs. In these cases, the Current ROI decreases from 27.1 to 14.2
and the Achievable ROI decreases from 22.3 to 12.3. This approximately proportional
relationship between changes in FT and resulting changes in ROI is characteristic of
the model.

This relationship between changes in FT and changes in ROI points out
a tremendous leverage opportunity for technology transition initiatives to reduce the
current, typical, 18-year delay [REDWINESS5] between the emergence of an enabling
software technology and its common operational use. If such initiatives can achieve
even a modest reduction of this delay down to 15 years, the DoD ROI would increase
roughly by a factor of 20%.

4.2.4 Meeting the SWTS Factor-of-Two Objective

Data generated from the ROI analysis can be used to assess whether the SWTS
could meet its stated objective of reducing DoD software costs by a factor of two by the
year 2000. Table 25 reproduces data from Tables 16 and 17 for the years 2000, 2002,
and 2004. The data show the no-investment Baseline, the savings from the Baseline
that will occur with the investments in the Achievable program, and the DoD software
costs estimated if the Achievable program investments are undertaken.

From these data, a cost reduction factor (CRF) can be generated. This factor is
the ratio of the Baseline costs over the remaining costs once the program is
implemented. If the CRF is greater than or equal to iwo, the SWTS investments have
met their objective.

With the assumptions in the model, the Achievable Program CRF does
not exceed two until slightly after FY2002. With less conservative assumptions, for
example the more aggressive technology transition effort discussed in Section 3.5, the
factor-of-two cost objective appears reachable by the year 2000 for the Achievable
- Program. It does not appear reachable by the Current Program, although the cost

reductions are still quite large.
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Table 25: Data on Factor-of-Two Cost Reductions

Expenditures, Savings, and Cost Reduction Factors by

Years
Program 2000 2002 2004

Baseline Costs $35.5 $39.1 $43.1
Achievable Program $13.3 $18.7 $249
Savings

Remaining DoD Costs $222 $20.4 $18.2
Achievable Cost 1.60 1.92 2.37
Reduction Factor (CRF)

Current Program CRF 1.31 141 1.49

Notes: Dollars in then-year billions, CRF is a ratio of baseline costs over remaining
DoD costs.

5. Summary and Conclusions
The major questions posed in Section 1 have the following answers:

*  Can the Current software technology program be justified with respect to
the no-investment Baseline situation? Yes. The net present value

generated by the Current Program is $34 billion. The return on
investment is 27:1.

* Can the Achievable Program be justified with respect to the Current
Program? Yes. The incremental net present value is $19 billion. The
incremental return on investment is about 17:1. The incremental ROI
from the Achievable Program is smaller than the ROI of the Current
Program. This is the result of the Current Program's opportunity to
work the high-leverage areas first. However, a DoD investment that pays

$17 for each dollar invested is extremely cost-effective.

» Can the SWTS meet its objective of reducing software costs by a factor
of two by the year 2000?

Answer: Only with less conservative assumptions than those used in the
analysis. Using the conservative assumptions, the Achievable Program

has an estimated cost reduction factor of 1.60 by 2000 and reaches a factor
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of 2 slightly after the year 2002. However, with moderately less
conservative but quite responsible assumptions, the objective can be
reached by the Achievable Program. The corresponding cost reduction
factor for the Current Program is in the 1.3-1.4 range.

An even stronger case for the Achievable Program is evident, once more
realistic projections of DoD software demand are used. As seen in Figure S, with even
a 3% increase in software demand over the conservative constant-1992-dollar demand
projection, the Current Program is unable to hold the line on out-year DoD software

costs, while the Achievable Program continues to reduce out-year DoD software costs.

Excursions are also presented to show that the Current and Achievable
Programs are cost-effective even if savings estimates are optimistic. Table 24
summarizes ROI results that indicate that even if the FT and FS for the Current and

Achievable Programs are over-estimated by a factor of two, the savings still justify the
SWTS investment.
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INTRODUCTION

The First Boston Corporation, a large investment bank in New York City,
began to build its own integrated computer aided software engineering (I-CASE)
tool in 1986. This decision was made following a comprehensive survey of the
market for CASE tools available at that time. This resulted in a determination that
there would be no tools commercially available within the next few years that would:

1) enable cost-effective expansion of the firm’s current applications to support
the demand for increased financial market trades processing in a 24-hour

a day, global market;

2) create high functionality, multi-tiered cooperative processing applications
that efficiently utilize the power and flexibility of --

* microcomputers and engineering workstations on the trading

platform;
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* fault-tolerant minicomputers for intraday trades processing and a
link to the financial markets;

* mainframe computers for current account and firm securities
inventory management, and historical database queries to support
trading analytics; and,

3 further control costs by paring down the overall level of developer expertise
that needed to be brought together to create the firm’s applications.

Following in-house development of "High Productivity Systems" (HPS), an
I-CASE tool set that supports the development of reusable software, First Boston’s
next step was to rebuild and roll out the core applications that formed its investment

banking software architecture.

A number of research questions were on our and management’s agenda
when we began to examine software development using HPS at First Boston. These
included:

(1)  To what extent did I-CASE support the software development process,
leading to improved productivity and higher quality applications?

2) Did software reuse drive the resulis?

3) Are the gains recognizable in small-scale experimental project
development?

(4)  If so, can they also be replicated in large-scale application development?

This paper provides some insights to these questions by presenting the
results of two phases of a multi-year field study that was carried out at the First
Boston Corporation. The first phase involved three exploratory I-CASE
development experiments in which we closely examined development performance.
The second phase involved data collection to support an empirical study of twenty
large-scale software development projects representing the bank’s I-CASE-built New
Trades Processing Architecture (NTPA).
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We first turn to a more in-depth discussion of the results of the three

experimental development projects. Thereafter, we will examine the results of the

development in the second phase of the project. We conclude with some ideas on

measurement and management approaches to improve the performance of I-CASE

development activities.

EVIDENCE FROM SMALL-SCALE EXPERIMENTAL PROJECTS

DEVELOPED USING 1-CASE

A useful approach to measuring the potential productivity impacts of

automated software engineering techniques is to examine how the process of

development proceeds in an experimental setting. The reasons for this are
threefold:

)

@

©)

When a software project is developed as an experiment, the analyst has the
opportunity to carefully craft the specifications for the project. This ensures
that the developer will focus on developing the kind of system using the
tools that management wishes to understand better.

Since the specifications of the product can be controlled and the developer’s
work can be closely monitored, it is possible to get a more accurate
measurement of development productivity for an experimental project than
for a real one.

Monitoring the developer also helps the analyst to understand the process
behind the product. This enables the analyst to go one step farther: to gain
an understanding of what factors drive the level of software development

productivity that is subsequently observed.

We applied this approach to estimate the productivity gains that First

Boston’s HPS delivered for development of three small experimental applications:

M

@)

a retail industry information system that offers store, district and head office
query and data processing capabilities;

an investment banking executive information system; and,
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€)) an investment banking trading workstation front-end.

Each was designed to exhibit a high level of user functionality and also
require at least two-tier (microcomputer and mainframe) cooperative or client-server
processing. Based on surveys of project managers in related work we conducted at
First Boston, we learned that developing a system with high functionality and
two-tier cooperative processing would require less than twice the effort when
compared to development using traditional means, even when project teams were
staffed with the most able developers. We were interested to see the extent to
which HPS affected development performance, even for a developer with relatively

little software engineering experience.

Experiment #1: A Retail Sales Tracking System

Application Description. The experimental development project was a sales
tracking system designed for broad use by large firms operating in multiple locations
in the retailing industry. The report and inquiry capabilities of the system were
meant to serve the needs of two levels of management: senior management at the
firm’s head office and store managers in the field. The firm’s computer architecture
was expected to consist of a large mainframe computer at the head office and
minicomputers at each of the stores. Management’s interest in obtaining on-line,
real-time and batch reports based on intra-day and historical sales necessitated
cooperative processing, because all data were uploaded to the firm’s head office at
the end of each business day for long-term storage. The system’s high functionality
was distinguished by the pull down menus and mouse-driven input screens of the

friendly user interface.

Function Point Analysis. We performed a function point analysis to
determine the relative size of the application. Function points measure the
functionality of an.application,as.opposed.to source lines of code (SLOC) (Albrecht

and Gafiney, 1983). ' This metric is increasingly accepted as a meaningful and
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reliable measure upon which to base an estimate of development effort (Kemerer,
1990; Symons, 1988). We estimated the size of the application at about 373 function
points. Table 1 shows the breakdown by task of the function point total.

Task Description. The functional specifications for the experimental
development project were designed in cooperation with First Boston Corporation
staff members in advance of engaging the experimental developer. The project
consisted of six development tasks. Four of these were primary tasks, which were
presented in detail at the beginning of the development period. The final two tasks
were enhancements. The enhancements were only discussed with the developer

following successful completion of the first four tasks.

EXPERIMENT #1: SIZE IN
DEVELOPMENT TASKS FUNCTION POINTS
Primary Tasks

Task #1 72

Task #2 80

Task #3 75

Task #4 70

Enhancement Tasks

Task #5 50

Task #6 26
Overall Project

Tasks #1-#6 373

TABLE 1. FUNCTION POINTS BY DEVELOPMENT TASK, EXPERIMENT
#1 -- RETAILING APPLICATION

Project Manager Perceptions of HPS Development Productivity. There were

insufficient time or resources available during the study period to develop the
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experimental system in parallel using traditional 3GL tools for comparison purposes.
Therefore, we sought to obtain development effort estimates from two
knowledgeable sources to support our conclusions about the productivity gains

associated with using HPS.

The first estimates were obtained in formal estimation sessions that we
moderated involving two teams of First Boston’s project managers. The second
source was an external consulting firm to whom we gave detailed documentationon

the experimental application.

The two formal estimation sessions involved seven project managers overall.
They were requested to gauge how long the technical design, construction and
testing-implementation phases would take if the application were built:
€)) without HPS and using minimal 3GL development tools;
) using HPS to construct a two-tiered cooperative processing
application; or,
3) using HPS to construct a three-tiered cooperative processing

application.

Project managers estimated that traditional development of the project
would take about ten weeks, even if the system were redefined to incorporate less
functionality. Two-tiered HPS development (similar to the experimental system that
was later developed), on the other hand, was estimated to require only six weeks
total. Increasing the requirements specifications to make the experimental

development project a three-tiered system was estimated to take approximately eight

weeks.

When project managers were asked to estimate the effort required using
traditional methods to provide the minimal functionality of the experimental
development project in_a_single-tiered_environment, they reported at least four

months would be required. When they considered what would be involved in
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duplicating the full functionality provided by HPS development using traditional
methods across the micro, mini and mainframe computer environments, that
estimate rose to two years of development effort. This estimate parallels what we
learned from project managers in another set of structured interviews conducted at

First Boston.

For a second independentand unbiased opinion, we provided the functional
specifications for the experimental development project to an external consulting
firm. They had no knowledge of any other aspects of this project. Their estimates
indicated that duplicating the system with minimal functionality in a 3GL
development environment would have taken at least two years, while use of
commercially available 4GL productivity tools would have required about eight

months. These estimates are summarized in Table 2.

Experimental Setting and Subject. HPS Version 2.61 was used for the
duration of this experimental development project. During this time, the developer
worked in a technically stable development environment. The subject of the
experimental application was a First Boston employee with an average knowledge
of HPS, based on a little more than six months of experience, and somewhat greater
than average programming ability. This person participated in the project on a

full-time basis, with the exception of one brief interruption.

Experimental Results. This project was actually completed in six weeks,
matching the average of the two estimates provided by First Boston’s project
managers. Table 3 reports actual productivity levels in function points per person
month for each experimental task. The developer observed that HPS Version 2.61
development involving an IBM S/88 minicomputer benefitted the least from HPS;
apparently there were few facilities in place at that time to support minicomputer
software development. The developer also observed that development time for on-
line, real-time screens was_greatly reduced due to the implementation of a new

screen painting facility.
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PROJECT MANAGER High Functionality, High Functionality,

PRODUCTIVITY Single-tiered Cooperative

ESTIMATION Comparison: Processing

CATEGORIES HPS to Comparison;
Traditional HPS to Traditional

Overall Life Cycle

Productivity 30% gain 100% gain

Average of Productivity

for Selected Subtasks 70% gain 130% gain

Maintenance/Enhancement

Productivity 80% gain 120% gain

TABLE 2. PROJECT MANAGER ESTIMATES OF DEVELOPMENT
PRODUCTIVITY GAINS IN TWO DEVELOPMENT SCENARIOS --
RETAILING APPLICATION (EXPERIMENT #1)

Throughout the experiment, we observed no explicit reuse of objects that
were constructed in other projects and stored in the repository. However, the
developer "templated" a great many new objects, by making slight modifications to
objects that she had built. Nevertheless, the productivity results, averaging 149
function points per person month across the six experimental tasks, compared
favorably with national estimates of software development productivity in the United

States that are presented near the end of this paper (Bouldin, 1989).

We also noted that productivity increased when the developer performed
the second of two inter-related tasks. This is indicated by the relatively higher
productivity levels observed for the enhancement tasks. We also observed that the
developer’s productivity declined following the brief, mid-project switch after Task

#3-to-another job: - Finally;we-observed that the developer pushed the limits of
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HPS’ high productivity in completing the final task. We believe that this did not
represent normal output, however, because the developer was due to go on vacation

at the end of the week the project was completed. Table 3 summarizes these

results.
UNADJUSTED ADJUSTED
EXPERIMENTAL ACTUAL ACTUAL
DEVELOPMENT PRODUCTIVITY PRODUCTIVITY
TASKS (Function points/ (Function points/
person month) person month)
Primary Tasks
Task #1 230 138
Task #2 240 144
Task #3 420 252
Task #4 200 120
Enhancement Tasks
Task #5 360 216
Task #6 775 465
Overall Project
Tasks #1-#6 248 149

Note: We report both unadjusted and adjusted actual productivity estimates. Adjusting the actual
productivity estimates downward by about 40% makes them comparable to development in
other First Boston Corporation projects.

The actual development effort we observed commenced at the technical design phase, whereas
in most software development shops, strategic planning, business analysis and functional design
account for a substantial amount of effort that we have not measured in the experiment.

TABLE 3. PRODUCTIVITY BY DEVELOPMENT TASK -- RETAIL
APPLICATION (EXPERIMENT #1)

Clearly, these figures are only estimates; they could not be substantiated at
the time because the CASE tool was so new. In addition, the experimental project
was small, and one could argue that commercial development of larger systems

would be an order of magnitude or two more complex. Still, the results prompted
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us to look into HPS-based development performance more deeply, to attempt to

understand what factors led to the high level of observed productivity.
Experiment #2: An Executive Information System

Application Description. This experimental application was meant to greatly
extend the core functionality of a system that previously had been built using 4GL
tools at a large financial institution. The application was intended to offer executives
the opportunity to make queries about the content of business relationships with

important customers.

Function Point Analysis. This application measured 1509 function points,
and was broken into two modules:
€)) a customer reporting module, representing about 1056 function points, or
70% of the application’s functionality, derived primarily from external
interfaces and input types;
) a customer account maintenance module, representing the remaining 30%
of the functionality, or 453 function points, derived primarily from input and
output types.

The complexity multiplier for the application was 1.03, suggesting that it was
of normal complexity, and in fact, the application exhibited a somewhat lower level
of functionality than we saw in other systems developed using HPS. Yet, this
application was a cooperative processing application, as the experiment was designed
to demonstrate three-tiered development productivity. User query databases were
located on a mainframe. The front-end graphics were generated by a
microcomputer, and employed data that were downloaded from a mainframe and

updated in real-time by a fault-tolerant minicomputer.

Task Description. The designspecifications of this experimental project were

created with the idea of testing the development of an application that incorporated
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many features that were believed to be well-supported by various elements of the
HPS tool set. Thus, the resulting application included the basic functionality of its
4GL-developed predecessor, but emphasized on-line, real-time functionality.

Estimate of Labor Required. The core elements of the application were
estimated by the developers to take about 4 to 5 person months to code using CICS
screens and mainframe COBOL. However, we were unable to perform a function
point analysis to determine the size of the 4GL-developed system. The developers
indicated that the new version of the system that was to be built experimentally

could not have been developed without HPS.

Experimental Setting and Subjects. Experimental development was carried
out under similar technical conditions as in Experiment #1. HPS Version 2.61 was
used and the tool was stable during the time the application was under development.
In addition to the design specifications, the primary difference between this
experiment and Experiment #1 was that this development was undertaken by a
team of seven developers, instead of just one person. Among the members of the
experimental project team, only one had more than six months experience in the use

of HPS, however, none of the participants was a novice in software development.

Experimental Results. Total observed work effort for the project was 918
hours, or about 5.18 person months, however, work on the project was not
continuous for all the developers. Each person spent an average of about 135 hours
on the project, with one person spending 10% more and another 10% less. These
estimates reflect the fact that the developers were also spending time in
demonstrations of the tool, in meetings and in other non-project related activities
for 40 hours over the five-week period. This level of effort is consistent with the

production of 175 function points per person month for the project overall.

The developers uniformly reported that becoming adept at HPS

development did not take very long. The application was developed in a series of
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increasingly complex prototypes, with developers alternately playing the role of
critical users. The core functionality of the 4GL-developed system was in place
within the first two weeks, and developers reported that team members had reused
a significant number of objects built by the team members for the project. However,
we did not have a measurement approach in place at that time to capture the levels

of reuse that were occurring.

Experiment #3: A Trader Workstation Front-end

Application Description. Experiment #3 involved the re-creation and
expansion of the functionality of a trader workstation front-end that previously had
been built at a large financial institution. The application was re-developed to
demonstrate that HPS could support a set of cooperative processing functions that
were evenly distributed across the mainframe, minicomputer and microcomputer

platforms.

Function Point Analysis. The size of the application was 1389 function
points. The functionality was distributed as follows:
(€)) 691 function points represented minicomputer functionality; and,
) the remainder, 698 function points, ran on the mainframe and

microcomputer.

When we examined the function point results more closely, we found that
approximately 37% of the functionality was derived from interfaces and 25% was

derived from inputs.

This experiment occurred about four months after Experiments #1 and #2,
and by that time, we had begun to make progress in understanding that tracking
productivity alone would not tell the whole story of development performance with
HPS. Thus, for this project we began to measure reuse more directly, in terms of

a metric called "reuse leverage”., Reuse leverage is defined as follows:
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#_HPS_OBIECTS_CALLED | #_UNIQUE_HPS_OBJECTS_BUILT

In addition to the overall level of reuse leverage, we also tracked the
greatest observed level of reuse leverage for an object, and individual reuse leverage

ratios for 3GL components, and HPS screens and rules.

Experimental Setting and Subjects. HPS Version 2.61 again was used and the
tool was stable during the time the application was under development. The team
of developers that worked on this experiment had been involved in the development

of a 3GL version of the same system at another financial institution.

Experimental Results. Table 4 reports the reuse leverage results for
Experiment #3. When examining these results, the reader should keep in mind that
all objects (except existing 3GL components) used by the developers were also built

by them during the course of their experimental development work.

The reuse leverage results indicated that the developers extensively reused
objects that they built themselves. The overall level of reuse leverage of 3.35 times
indicates that only about 30% (1/3.35) of the functionality had to be built from

scratch, indicating significant potential for a productivity gain to be observed.

Trader workstationsoftware normally requires many calls to well-tested 3GL
components that provide specialized functions related to the pricing and trading of
financial instruments. In most investment banks such library routines are normally
available right off the shelf, so the reuse leverage observed for 3GL components is

quite realistic.
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REUSE LEVERAGE CATEGORY REUSE LEVERAGE
Overall Reuse Leverage 3.35 times

Greatest Observed Reuse

Leverage for a Specific Object 17.00 times

3GL Component Reuse Leverage 11.10 times

HPS Screen Reuse Leverage 3.43 times

HPS Rule Reuse Leverage 2.72 times

TABLE 4. REUSE LEVERAGE RESULTS FOR TRADER WORKSTATION
FRONT-END (EXPERIMENT #3)

The greatest observed level of reuse leverage for a single object was about
17 times, and this object was one that was built by the developers as an HPS object
during the project. Such high levels of reuse often occur in financial analytics
software, for example, when date or interest rate-related computations must be
performed in order to compute the present value of a series of cash flows related

to a financial instrument.

More interesting to us was the evidence that two kinds of HPS objects --
“rules” and "screens" -- offer significant reuse opportunities. Rules can be thought
of in COBOL as statements in the procedure division. Screens, on the other hand,
enable users to interact with the application, input trade-related data and see the
results of specific trades. In on-line, real-time applications, these two object types
are the most labor-consuming to build. (Batch applications involve the creation of
HPS "report” objects, while both batch and on-line applications require developers

to build "files" and other less labor-intensive objects.)

Agreuse leverage,0f 2:72 timesyfor rules is consistent with only having to
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build about 37% (1/2.72) of the procedure division, if development had occurred
using COBOL. Screens tended to be reused even more, 3.43 times, which means

that developers only built about 30% (1/3.43) of all application screens from scratch.

Table 5 presents productivity results for Experiment #3, and breaks them
out across the minicomputer function points and the combined PC-mainframe
function points. The application required 502 person-hours of effort, for an

aggregate productivity level of about 272 function points per person month.

FUNCTION POINTS/
DEVELOPMENT ACTIVITY FUNCTION POINTS PERSON MONTH
Minicomputer Software
Functionality 691 222
PC and Mainframe
Software Functionality 698 336
Overall Application 1389 272

Note:  The actual productivity estimates were adjusted downward by about 40% to make them
comparable to development in other First Boston Corporation projects. The actual
development effort we observed commenced at the technical design phase, whereas in most
software development shops, strategic planning, business analysis and functional design account
for a substantial amount of effort that we have not measured in the experiment.

TABLE 5. PRODUCTIVITY RESULTS FOR TRADER WORKSTATION FRONT-
END (EXPERIMENT #3)

The results that were observed in the development of the trader workstation
front-end (perhaps to a greater extent than the results observed in the first two
experiments), confirmed that software reuse has the power to play a major role in
the realization of improved productivity results. Although some of our preliminary
questions about the extent of the productivity gains that might be observed in HPS

development were answered, many more new questions emerged that would require
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additional study. These questions included the following:

M
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Would the order of magnitude of the software development productivity
results hold when the project was scaled up from an experiment to the
creation of larger, more complex systems?

Would differences in software reuse leverage levels appear in larger
projects? In projects that performed predominantly on-line, real-time
processing versus batch processing?

How would software development performance change as the use of the I-
CASE tool and the tool set itself matured? How rapidly could developers
come up to speed to enable large productivity gains to be achieved?
What modifications to standard models in the software engineering
economics literature would be needed to capture the impact of reuse on
productivity? Does the creation of "reuse leverage" represent a separate

"production process"?

EVIDENCE FROM LARGE-SCALE DEVELOPMENT USING I-CASE:

FIRST BOSTON’S NEW TRADES PROCESSING ARCHITECTURE (NTPA)

The recent trend in software development in the investment banking

industry has been in the direction of applications that deliver a higher level of

functionality for the user. Such applications are exemplified by workstation displays

that present historical pricing data, graphical analytics and up-to-date prices for

financial instruments, in addition to a capability to effect a trade. In this section we

will examine the First Boston Corporation’s experience with respect to I-CASE-

based software development of such applications. The software development

performance results that we present emphasize the close relationship between

software reuse and the firm’s ability to achieve high levels of development

| productivity.
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First Boston’s New Trades Processing Architecture: Background

During the latter half of the 1980s, First Boston Corporation’s senior IS
management believed that to effectively support the firm’s investment banking
business increasingly sophisticated software applications and growing computer
hardware power for high speed securities and money market transactions processing
would be needed. This also would require immediate access to large mainframe
databases whose contents could be processed in real-time using highly complex
financial analysis software. Such applications would require local access and
customized analysis of distributed databases for financial market traders, and

management and control of the firm’s cash balances and securities inventory.

Similar to other firms in the industry, First Boston’s systems would soon
need to operate 24 hours a day across three platforms -- microcomputers,
minicomputers and mainframes -- in support of global investment banking and
money market trading activities. Much of the power that such software/hardware
combinations would deliver was aimed at giving traders a few minutes (or even
seconds) worth of time, an advantage that would help them to realize a profit in
highly competitive markets. Such high functionality software was believed to offer
a trader the ability to:

1) obtain improved information access, through consolidation of multiple
digital data feeds of market information on a single trader workstation;

2) utilize real-time computer-based financial optimization analytics to support
trading decisions with respect to existing and newly created financial
instruments, and that would take advantage of the consolidated digital
feeds; and,

3) customize a user-friendly, windowing interface to suit a specific need.

In addition, senior management believed that higher functionality software
could pay off in other ways. For example, through the delivery of consolidated and

unbundled information on customer accounts and trader positions, it might be
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possible to improve global and local financial risk management.

The firm’s senior management aiso recognized that it was not possible to
bring high functionality systems into production rapidly with traditional development
methods. The only way to avoid this "software trap" was to consider automating
software development (Feder, 1988). Following a survey of the available
technologies then on the market, it was decided that an integrated CASE tool would
be built in-house (Clemons, 1991). The result was the commitment of $100 million
over the course of the next several years to create a new software development
methodology and a new architecture of investment banking software applications.
This investment would lay the foundation for High Productivity Systems (HPS), the
firm’s I-CASE tool set, and the infrastructure of investment banking applications for
the firm that came to be known as the New Trades Processing Architecture (NTPA).

HPS and the Reusable Software Approach

The approach that the firm implemented emphasized software reuse. The
technical vision involved rebuilding the firm’s information systems architecture in a
way that their basic building blocks -- objects and modules -- could be reused
repeatedly. The methodology also would help to reduce the bank’s reliance on
costly language-specialized programmers by making it possible to develop software
that could run on any of the three platforms with a single "rules language.” This
rules language would be defined within the HPS I-CASE tool. Code generators
would then process this HPS code so that run-time COBOL, PL/1 and C and other
code would be generated for each of the three major development platforms. The
automated generation of run-time code was meant to screen developers from the
complexity of the development environment. Most developers could focus on

development by employing the HPS rules language, instead of traditional 3GLs.

HPS supports reuse because it operates in conjunctionwith an object-based

centralized repository. ‘The object types are defined within the rules language and
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include programs, rules, output screens, user reports, data fields and 3GL
components, among others. The centralized repository is the key enabling
technology that supports the firm’s reuse methodology. Specifications for the objects
used to constructan application are stored in the repository and are widely available
to other developers. The repository includes all the definitions of the data and

objects that make up the organization’s business.

The motivation for having a single repository for all such objects is similar
to that for having a single database for all data: all objects need only be written
once, no matter how many times they are used. When they are used and reused in
various combinations, repository objects form the functionality that represents the

information systems processing capability of the firm.

At the time we conducted this study, HPS provided application entity
relationship diagramming and screen prototyping facilities for enterprise modeling
and analysis and design. It also offered code generators for several development
languages, as well as tools for debugging code and managing versions of the same
application. Table 6 presents an overview of some of the capabilities of HPS in the

first two years that it was deployed.

Data Collection

Data were gathered on the development of twenty NTPA applications
(some of which were broken in sub-projects), representing substantially all I-CASE
development at First Boston during the first two years following the deployment of
HPS. Table 7 presents information that will provide the reader with some
understanding of the functions these applications provided for the bank’s

information processing infrastructure.

We obtained data in the following ways:

1) examination of records on labor charges to projects;
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SPECIFIC TOOL SET
CAPABILITY

Information engineering-based
data modeling package

Diagramming tools to represent:
* entity-relationships
* business function hierarchies
* object-functionmatrixmapping

Capabilities of diagramming tools
mentioned above apply here also

Data dependency diagramming

Languages include: C, COBOL,
assembler, PL1 and SQL

Specific generators for: Windows
and OS/2; COBOL CICS/MVS
batch; IBM S/88 batch and on-line
COBOL; IBM 3270 terminal
screens; Windows and OS/2
PresentationManager menusand
HELP screens; DB2 databases

Debugging tool for generated code

Tool capabilities include:
* autoversioninstallationcontrol
* repository migration control
* system rebuild

LIFE-CYCLE ACTIVITY
PHASE SUPPORTED
Requirements  Enterprise modeling
Information engineering
System Detailed support for
Analysis enterprise modeling
and Design and information
engineering
Construction  Code development for
cooperative processing on
mainframes, minis and PCs
Code generation from HPS
"rules language"”
Implementation Application code debugging
and Testing
Installation support
Production Miscellaneous
and
Maintenance

Production version management
facilty; software distribution
control; debuggers for maintaining
code

TABLE 6. THE HPS TOOL SET IN YEARS 1 AND 2 FOLLOWING

IMPLEMENTATION
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Broker Master
Trade Inquiry
Dealers’ Clearance
Producer Master
Trading Account
Trade Entry
Figuration

Cash Management

Customer Account

Product Master

Dividend Interest Redemption
Real-Time Firm Inventory
Affirmation

Mortgage-Backed Securities
Overnight Firm Inventory
Floor/Desk/Breaksheet

Firm Price Management

General Ledger Interface

Note: In some instances, applications were subdivided forming the "projects” that we tracked. This
led to the identification of multiple projects for a small number of the applications. In
addition, the data set we examined did not actually include all of the applications listed above;
some were excluded due to unavailable documentation or labor expense data.

TABLE 7. APPLICATIONS IN THE NEW TRADES PROCESSING
ARCHITECTURE -- SOFTWARE FOR THE OPERATING
INFRASTRUCTURE OF AN INVESTMENT BANK

?) function point analysis based on examination of documentation describing

NTPA applications;

3) interviews with project managers and project team members; and,

“ object analysis based on DB2 queries to the object repository and manual

examination of application documentation.

Estimates of labor consumed. We obtained disaggregated and detailed

reports on the hours for each developer assigned to an application project.

Although this data was relatively complete, the bank did not have a productivity

reporting,systemyinyplacey(nor,didritstrack; productivity in terms of function points).
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As a result, in some cases it was necessary to apply second checks to ensure that we
had captured all (or substantially all) of the labor hours expended on a project. In
other cases where we believed that the data were too sketchy or likely to be in error,

we omitted the project from further consideration in the study.

Function point analysis. To perform function point analyses for NTPA
applications, we collected application documentation for as many applications as we
could. In some cases, no documentation was yet available. These had been built
using HPS prior to the time that application documentation was an automated by-

product of system analysis and design procedures.

Function point analyses performed by members of the research team were
double-checked for accuracy, and all members of the team were thoroughly trained
to reduce the likelihood that the results would be different for different analysts.
Project managers offered information about the extent to which the application
development environment differed from the norm, making application development

more complex.

Interviews with project managers and team members. These interviews were
conducted by two members of the research team over the course of two months.
The primary purpose of the interviews was to gain assistance with interpreting the
labor charges that were made to the projects, how to break those charges out over
sub-projects (where they were defined and software developers were broken into
smaller teams), and other aspects of a project that might result in different levels of
observed productivity. For example, project managers assisted us by specifying the
"environmental modifiers" that are applied in function point analysis. In many cases,
we learned that I-CASE development tended to reduce environmental complexity

for development.

Because the research team was on-site at the bank, the interview process

allowed for an initial meeting and then multiple follow-up interviews, when
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necessary. In many cases, project managers played a crucial role in helping to
ensure that the data we collected were accurate. They also offered advice and
guidance that helped us to shape a new modeling perspective that reflects the

related activities of reusing software and improving productivity.

Project team members provided useful information to enable us to better
understand how the reusable software approach was applied in specific software
projects. Through interviews with these developers, we learned about some of the
advantages and disadvantages of the approach, and how smaller and larger projects

might be affected differently.

The key issue that was discussed had to do with the incentive compatibility
of software developers to build objects that would be widely reusable by other
software developers. In the first two years of software development under HPS,
developers "owned" objects that they developed first. Thus they had some measure
of responsibility to ensure that the objects performed well in their own and in other

developers’ applications.

Because guaranteeing the performance of a software object in multiple
contexts was difficult for individual developers, an agency problem developed which
resulted in developers encouraging one another to make slight modifications to
existing objects, and then to rename them. This had the effect of shifting ownership

from the original developer to the developer who modified the object.

Object analysis. In order to obtain information about software reuse levels
in each of the projects, research team members conducted "object analyses" to
enable the estimation of project reuse leverage. This proved to be more difficult
than we envisioned for two reasons:

€)) It was necessary to ensure that the documented application matched the
content of the application that was actually built; and,

2) the documentation varied in quality, in some cases enabling function point
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analysis, but not a detailed count of application objects.

In view of these difficulties, a compromise was necessary. We found this
compromise in follow-up interviews with project managers, who informed us that
some HPS objects required very little effort to build, while others would be likely to
act as the primary cost drivers. This enabled us to focus data collection efforts on
the key cost driver objects (rules, screens, files, reports and 3GL components). As
it turned out, much of this data was available from the documentation, and was

quite accurate.

(More recently, we have been attempting to implement an automated object
analysis procedure to confirm the quality of the NTPA project reuse leverage levels
that we report in this paper and elsewhere (Banker and Kauffman, 1991). Our
attempts to carry out automated object analysis for the NTPA projects have been
hampered as the I-CASE tool has evolved. Further analysis requires the migration
of prior versions of the applications to the centralized object repository that operates

under the current version of HPS.)

Software Reuse Results

Table 8 presents the results obtained for reuse leverage in the twenty NTPA
projects. The results contrast software development under HPS in Years 1 and 2
following implementation. They show how reuse leverage differed for on-line, real
time versus batch processing application development. The table also shows the

distribution of the application projects across these categories.

The observed levels of reuse leverage were lower in Year 1 (1.82 times)
than they were in Year 2 (3.95 times). This is a very likely outcome. The lower
reuse leverage in Year 1 was probably caused by one of several factors. These

include:
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CASE TOOL WEIGHTED AVERAGE REUSE LEVERAGE
BY APPLICATION TYPE

EXPERIENCE
CATEGORIES ON-LINE BATCH BOTH

(# PROJECTS) (# PROJECTS) (# PROJECTS)
YEAR 1
PROJECTS 2.95 141 1.82
ONLY 5) ®) (13)
YEAR 2
PROJECTS 4.11 3.05 3.95
ONLY ©6) (1) Q)
Note: The average reuse leverage results are weighted for project size in terms of the total number

of objects in an application.

TABLE 8. REUSE LEVERAGE FOR ON-LINE AND BATCH APPLICATIONS BY
CASE TOOL EXPERIENCE CATEGORY

* lack of familiarity on the part of developers with the reusable software
approach;

* difficulty in finding the appropriate objects to reuse;

* the practice (discussed earlier and interpreted as a response to the agency

problem of object "ownership") of templating and renaming nearly matching
software objects to avoid having to debug them; and,

* the small number of objects available in the repository for reuse.

In the Year 1 results, it is also interesting to note that on-line, real-time
application development evidenced higher reuse leverage (2.95 times) than batch
processing applications (1.41 times). In Year 1, the HPS tool set was biased to
support on-line, real-time development to a greater extent than batch processing
applications. Although the developers of the HPS I-CASE tools had a year or more
lead time to develop its capabilities, the functionality of the tools was still limited.
Management decided to focus efforts to create HPS tools that would support on-

line, real-time developmentearlier. Facing substantial risks associated with the large
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investment in building an I-CASE tool set, it was important to enable the delivery
of applications that would be visible to users early on and whose impact would be
felt in the business. In addition, the higher cost of developing more complex on-line,

real-time applications made the focus natural.

By Year 2 the HPS tool set increasingly treated on-line, real-time and batch
developmenton equal terms. Year 2 reuse leverage for batch processing application
(3.05 times) exceeded the Year 1 level observed for on-line, real-time applications
(2.95 times). This improvement can be attributed (in part) to changes in the HPS
tool set. For example:

* batch development activities were made more productive through the
deployment of a "report painting” facility; this enabled developers to nearly
match the productivity that they could obtain for on-line, real-time
applications when using a screen painter; and,

* when communication between platforms was required for both batch and
on-line applications, highly specialized 3GL components (frequently called
"middleware" by the developers we interviewed) had now become available

that could be "plugged in".

Developers indicated that they were learning how to use HPS, and in the
process, how to reuse more code more often. This perhaps best explains the level
of reuse observed for Year 2 on-line, real-time application development (4.11 times).
This level of reuse is consistent with building just 24% of an application from

scratch, while the remaining 76% results from reused objects.

Large Application Development Productivity

Table 9 presents the function point productivity levels that were observed
for the twenty NTPA projects. Similar to our presentation of the reuse leverage
results, we_include results for Years 1 and 2 to indicate the extent of the learning

that was occurring about how to develop software using HPS. We also include
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separate productivity figures for on-line, real-time and batch processing applications.

PRODUCTIVITY BY APPLICATION TYPE OF PROJECT

CASE TOOL IN FUNCTION POINTS PER PERSON-MONTH
EXPERIENCE ON-LINE BATCH BOTH
CATEGORIES (# PROJECTS) (# PROJECTS) (# PROJECTS)
YEAR 1

PROJECTS 321 94 15.6
ONLY Q) ©®) (13)
YEAR 2

PROJECTS 135.4 384 121.6
ONLY (©) M ™)
Note: The average productivity results are weighted for project size in function points.

TABLE 9. PRODUCTIVITY COMPARISONS FOR ON-LINE AND BATCH
APPLICATIONS BY CASE TOOL EXPERIENCE CATEGORY

The productivity results in Year 1 suggest the power associated with
software reuse. Productivity for Year 1 on-line, real-time application development
was on the order of 32 function points per person month (FP/M), while Year 1
batch processing application development was only 9.4 FP/M. The reuse leverage
associated with the on-line projects was 2.95 times (only 34% of the total
functionality of the applications had to be built), and batch projects was a more
modest 1.41 times (71% of application functionality had to be built from scratch).

By Year 2 productivity for both on-line and batch application development
was substantially improved. Year 2 productivity for batch projects (38.4 FP/M) now
exceeded Year 1 productivity for on-line, real-time applications. When these results
were reviewed with project managers and software developers, most indicated that

the increase in reuse leverage for batch development was responsible, and that the
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improved capabilities of the I-CASE tool set was a major factor. (Recall that Year
2 reuse leverage of 3.05 times for batch processing application exceeded the Year

1 level of 2.95 times observed for on-line, real-time applications.)

Meanwhile, Year 2 productivity for on-line, real-time projects improved to
135.4 FP/M, four times better than in Year 1. Developers that we interviewed
indicated that the primary factors responsible for this result were the availability of
a larger pool of reusable repository objects, and the knowledge of how to locate
them. In Year 2 developers became more familiar with a facility in HPS that
provided key word search for objects. The key words were taken from the object
name, still a relatively weak method on which to develop a complete set of

candidate objects for reuse, but apparently very useful.

(Since the time that we did this analysis, we have learned much about the
process of reusing software in the HPS I-CASE development environment. Banker,
Kauffman and Zweig (1992) reported that reuse is often biased towards reuse of
"owned" objects or objects created by project team members. Apparently the key
word search facility was not the only, and probably not even the primary mechanism
that developers used to identify objects that could potentially be reused.)

Comparison of Productivity Results with National Averages

Table 10 summarizes the productivity results obtained in the study and
compares them with estimates of national averages of software development
productivity made by Capers Jones. The present results compare favorably with the
estimated national averages, and suggest the potential for order of magnitude
productivity gains that may become possible when I-CASE development tools are

used.
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FUNCTION
PROJECT POINTS/
COMPARISON PERSON-
CATEGORIES MONTH COMMENTS

Intra-firm Estimates of Year 2 Performance

Productivity influenced by lack of 3GL component
handling facility in earlier version of CASE tool
Batch report painter and SQL query support
added to boost productivity in Year 2.

Productivity enhanced by use of rapid, on-line
screen painter, and high levels of reuse.

Large, technically complex development efforts.
Averages initial development and subsequent
maijntenance.

Averages development activities conducted with
and without CASE tools.

"Mature" defined as a minimum of two years of
experience with a relatively stable tool set.

A projected target for firms using an I-CASE
tool.

BATCH 384
PROCESSING

ONLY

ON-LINE, REAL- 1354
TIME ONLY

External World Estimates
MILITARY/ 3.0
DEFENSE DEPARTMENT
TRADITIONAL 5.0
3GL

MIS BUSINESS 8.0
APPLICATIONS

MATURE CASE, 15.0
NO REUSE

MATURE CASE, 65.0
WITH REUSE

Note:

The external world figures are found in Bouldin (1989), who attributes them to Capers Jones.

TABLE 10. COMPARISONS BETWEENINTRA-FIRM AND EXTERNALWORLD
SOFTWARE DEVELOPMENT PRODUCTIVITY
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CONCLUSION

This paper provided evidence of the extent to which software reuse and I-
CASE tools that operate in conjunction with a centralized repository have the
potential to influence software development performance. Clearly, the results of this
study can only be generalized to a limited extent. The research examined one I-
CASE tool set at one site over two time periods, just following deployment of the
tools. Nevertheless we learned much about the process of modeling software
development productivity in this kind of development environment and the kinds of
new metrics that management will want to track to better understand I-CASE
development. In this concluding section, we first offer some preliminary answers
to questions that were posed earlier. Finally, we end this paper by offering some

thoughts about what implications our work may have for researchers and managers.

Did the order of magnitude of the software development productivity results
observed in the experiments hold for larger-scale development? Apparently they did
not. Although development productivity was at least one order of magnitude better
(135.4 FP/M for I-CASE on-line, real-time application development versus Capers
Jones’ estimate of 8.0 FP/M for business MIS applications developed using
traditional methods) than if 3GL methods had been used, it was evident that the
results only held in a limited scenario. Moreover, nowhere did we observe in the
NTPA development the 200+ FP/M productivity levels observed in experimental

development.

Were the levels of software reuse different in the experimental and large-
scale development projects? Here we had just one data point among the
experimental projects to make our comparison. The results suggest that they were
similar, especially in Year 2. (The comparison is between the overall reuse leverage
(3.35 times) observed for Experiment #3, the trader workstation front-end, and the
reuse leverages observed for NTPA on-line (4.11 times) and batch processing (3.05

times) applications in Year 2.) Increasing software reuse as project size increases
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involves planning, coordination and search costs that were not evident for the
experimental projects or for smaller projects. But larger projects may offer more
opportunities for reuse, despite their complexity. The relationship between project
scale and software reuse observed is an issue that must be addressed in future

research.

Did development performance change as the use of the I-CASE tool and
the tool set itself matured? There is no doubt from the results that we report and
the interpretations offered to us by First Boston Corporation project managers that
learning played a very important role in the outcome. Developers were learning to
use the new tools as they became available. They were learning to be better at
reusing code simultaneously. We observed a very steep learning curve for
productivity and reuse leverage between Years 1 and 2 in the use of HPS to develop
NTPA. The extent of the potential impact of future learning remains an open issue,

however.

What was learned from this study that will assist other researchers in their
attempts to model I-CASE development performance? Our research suggests that
software development labor is transformed into software outputs (objects, modules
or function points in this case) in the presence of a second production process that
leads to observed reuse. From what we have seen, reuse leverage is created through
a separate production process that involves labor, an existing pool of software
objects and significant capital invested in a tool that supports the reusable software
approach. Although detailed consideration of the factors that may drive higher levels
of software reuse is beyond the scope of this paper, the reader should recognize that
such factors must be considered to understand how to manage projects to generate
higher levels of software reuse, paving the way for order of magnitude of gains in

development productivity.

From.a_software engineering economics perspective, the well-accepted

concept that software outputs are based on a single "software development
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production function" may need to be re-evaluated. We have made initial attempts

along these lines by estimating two separate production functions using seemingly

unrelated regression estimation. For additional details, see Banker and Kauffman

(1991).

The implications of this research for managers in I-CASE environments are

as follows:

M

@

©)

Because software reuse appears to constrain the potential for software
development productivity, it makes sense to implement measurement
systems that track software reuse, as well as software development
performance. Problems with software development productivity may be due
to insufficiently high levels of reuse.

If managers believe that it is worthwhile to measure software reuse, they
should also recognize the potential difficulties that such measurement may
entail. The metric that is discussed in this paper, reuse leverage, is
probably new to the reader. There are no widely implemented standards
at present, though the IEEE has written a standards document and made
it widely available for comment. In addition, measuring reuse leverage
manually was very labor and time-consuming. The only real solution is to
automate such analysis. (In fact, very little work has been done to date in
this area also. One exception is the work of Banker, Kauffman, Wright and
Zweig (1992), who proposed a taxonomy of software reuse metrics and
suggested an approach to their automation.)

The levels of observed reuse are likely to be influenced by the set of
incentive mechanisms that managers devise to overcome the "agency
problem” that we described. In the development environment that we
studied it is likely that a one-time (if minor) gain in reuse leverage could be
obtained by placing objects, once they have been developed and tested, on
neutral ground, so that the original developer would no longer be required
to_guarantee their performance. Other gains could be achieved by

implementing incentive mechanisms to increase more directly the observed



71

levels of reuse.

A natural new owner would be an "object administrator”, whose primary

roles would involve:

(€))] ensuring that a broad base of reusable repository objects is available for
other developers to use;

2) planning for a minimal subset of "reusable objects" to provide the kind of
functionality that is needed in many different kinds of projects; and,

3 proposing incentive mechanisms for senior management review that will
assist in the achievement of higher levels of reuse leverage to support

improved productivity.

Our call for "object administration” is meant to achieve the same kinds of
payoffs in I-CASE development in the 1990s that database administration has
delivered since the 1970s.
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[Albrecht and Gaffney, 1983]

[Banker and Kauffman, 1991]

[Banker, Kauffman and

Zweig, 1992]

[Banker, Kauffman, Wright
and Zweig, 1992]

[Bouldin, 1989]
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I. INTRODUCTION

The literature on the software development industry
(summarized in [2]) contains references to returns-to-scale
as a factor in software development productivity. As noted
in [2], most studies have typically related project size to
labor productivity. A general finding is that software
development tools and more specialized labor are usually
employed on larger, in terms of project size, software
projects. However, this observation does not necessarily
imply increasing returns to a particular input, such as
software development tools or more specialized labor. The
confusion in the literature stems from the use of the term
scale and the more general observation that large projects
rarely have the same capital-labor mix as their smaller
counterparts. In this paper returns-to-scale estimates are
allowed to vary with both project capital-labor mix and
project size.

We estimate returns-to-scale in both parametric and
nonparametric production models' for a sample of Department

1 see [11)] for a comparison of parametric and
nonparametric methods for measuring productive efficiency.
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of Defense (DoD) Automated Information Systems (AIS) software
development projects. We demonstrate that when input mix is
believed to be an important determinant of economies-of-
scale, the typical approach of relating labor productivity to
project size may be inappropriate for determining the true
nature of returns-to-scale and the effect of economies-of-
scale on productivity. We also confirm the Banker and
Kemerer [2] observation that as project size increases,
diminishing returns eventually prevail. However, we extend
the Banker and Kemerer results by showing that when labor and
productivity tools are both included as production inputs,
efficient project size is, in general, larger than when only
a labor input is considered.

A. The Concept of Returns-to-Scale

A production technology defines the technical means
whereby materials and services (designated inputs) may be
combined to produce one or more goods or services (the
outputs of the process). Economists have chosen to represent
these technical relationships with production functions which
express the maximum level of output(s) produced for each
given level of inputsz. Graphically the production function
can be represented by the isoquant (constant product locus)
in Figure 1. In Figure 1 we assume that two inputs, capital
(K) and labor (L), are used to produce one output, Q. It
should be noted that while point A lies on the isoquant;
point A’ does not; that is, point A’ does not represent a
technically efficient means of producing a given output level
Q,- Mathematically, a production function can be written as:

2 The neoclassical theory of production economics is
presented by Ferguson [9]. More modern treatments of the
subject are presented by Shephard [12] or Fare (7].
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Q=F(X, X, ..X%,),

where Q is the maximum output rate and the x's are the input
rates of the n production factors. One characteristic of the
production technology is returns-to-scale.

-

~[x

Figure 1. Software Production Function.

Returns-to-scale is defined as the relative increase in
output as all inputs are increased proportionally so that the
relative factor mix does not change. The returns-to-scale
elasticity, €, is given by:

where A is the proportionate expansion in all inputs, and is
equal to dF/dxi for all i. By definition, Iel > 1 indicates
increasing returns-to-scale, |e| = 1 indicates constant
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returns-to-scale, and |e| < 1 indicates decreasing
returns—-to-scale. Alternatively, total differentiation of
the production function yields an equivalent expression that
allows the returns-to-scale elasticity to be expressed in
terms of the partial factor output elasticities as:

aF‘ﬁ+aF xz aF xn
dx, 0 ox, 0 '~ ox, O

Graphically, returns-to-scale can be depicted in terms
of the spacing among several isoquants, each associated with
a different output rate as indicated in Figure 1.
Furthermore, we can also differentiate between different
scale effects based on different production functions.
Following [6], consider two distinct rays from the origin,
K’/L’' and K/L. Along these rays the total product curves
differ for the different production functions. For the most
general case, the ray-homothetic production function, the
total product curves associated with K’/L’ and K/L may differ
both with respect to factor intensity and output level.
Another case, the ray-homogeneous production function allows
the total product curves to vary with factor proportions, but
they are monotone; that is, the degree of homogeneity is
constant for each K/L. Or equivalently, scale elasticity is
constant along a particular K/L but may differ between K’/L’
and K/L. For the homothetic production function, the total
product curves are also identical, however, they need not be
monotone; that is, scale elasticity may vary with output.

Homothetic production functions and their corresponding
scale effects can be explained in another way. Define the
marginal rate of technical substitution (MRTS) as the
negative of the rate at which one input substitutes for
another along an isoquant (i.e., holding output rate
constant). Using the general production function, the MRTS
is defined as
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where Q is a given output rate. For homothetic technologies
the MRTS remains unchanged as we move from one isoquant to
another keeping input proportions constant; that is, the MRTS
along a ray K’/L’ is constant. Thus, a homothetic technology
implies that the returns-to-scale elasticity, e, is a
function of only output since it will be invariant to changes
in input proportions.

A further decomposition of homothetic technologies
defines the most restrictive production function, the
homogeneous production function. Homogeneous production
functions are characterized by a constant returns-to-scale
elasticity; that is, e is invariant to changes in Q (as well
as input proportions). This means that the total product
curves associated with the two factor proportions K’/L’ and

K/L are identical and monotone.

B. Software Productivity Literature Review

Much of the literature relevant to scale estimation in
new software development is summarized by Banker and Kemerer
[2]. In most of these studies regression analysis is used to
estimate returns-to-scale, and in most cases a global
estimate is obtained for each software project data set.
Banker and Kemerer extend this research by applying
nonparametric linear programming methods to compute a most
productive scale size for new software projects (see [1] for
a presentation of most productive scale size). Since the
linear programming approach provides a scale estimate for
each software project, it is possible to examine how scale
varies with project size. Given our understanding of the
software development process, a reasonable hypothesis is that
small projects.are.characterized by increasing returns, while
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large projects are characterized by diminishing returns.
This hypothesis was not rejected by Banker and Kemerer after
examining numerous new software project data sets.

C. An Extended Hypothesis

This paper extends and refines the work of Banker and
Kemerer. We confirm, using a DoD software development
project data set, that increasing returns are associated with
small projects and decreasing returns are associated with
larger projects. In addition, we hypothesize that the
software productivity tools identified by Boehm [3] delay the
inevitable occurrence of diminishing returns. That is, given
the tools, increasing returns are observed for larger
projects than when ignoring the tools. 1If this hypothesis
cannot be rejected, there are obvious implications for
software development practitioners. Our data set also
suggests that higher-level productivity tools have larger
marginal productivity with respect to potential output.

II. THE DATA

The data were taken from a stratified survey sample of
90 Department of Defense Automated Information Systems
supported by general purpose automated data processing and
developed by both in-house and contractor personnel [10].
Since there is no completely documented inventory of DoD AIS,
the sampling strategy involved collecting data on software
development projects that are consistent in age, function,
and DoD component within the known DoD hardware inventory.
The DoD computer hardware inventory is contained in the
Automated Resources Management System maintained by the
Defense Logistics Agency [5].

In order to account for differences in computer
languages, code reuse, and straight conversion from existing
codejj the selected samplecontains only those COBOL projects
for which the algorithms and 1logic design were almost
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entirely created from scratch. There were 37 projects that
fulfilled these requirements. This data set is homogeneous
in the sense that all projects are sized in standardized
COBOL lines of code (described further below).

To model software development in a production
framework, the inputs and outputs must be specified. We
introduce the following notation which is used in the tables
and models that follow:

Q= software project output; i.e., thousands of
gource lines of code,

L = labor measured in man-months of effort required
to complete the main software build. This is
defined to include effort on detailed design,
coding, integration, quality assurance,
configuration management, publications, and
management,

K; = number of low-level productivity tools employed
per software project,

K, = number of nominal-level productivity tools
employed per software project,

K3 = number of high-level productivity tools employed
per software project.

Table 1 contains descriptive statistics of these variables.

Table 1. Variable Descriptive Statistics

Variable Mean St. Dev. Minimum Maximum
Q 287.5 472.2 5.0 2000.0
L 609.7 1050.6 10.5 5000.0
K, 2.9 1.5 1.0 7.0
K, 4.8 2.2 1.0 10.0
K3 4,2 3.0 1.0 14.0

The output measure, thousands of source lines of code
(Q), is taken from the survey. The respondents were
instructed to follow the code counting convention used in
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[31. Lines of code are defined to include all program
instructions created by project personnel and processed into
machine code by some combination of preprocessors, compilers,
and assemblers. The measure excludes comment instructions and
unmodified utility software, but includes 3job control
language, format statements, and data declarations. The
definition of lines of code also excludes non-delivered
support software such as test drivers. However, if these are
developed with the same care as delivered software, with
their own reviews, test plans, documentation, etc.; then they
were included in the count.

Turning to the specification of the inputs. The labor
variable (L) was taken directly from the survey as defined
above. We specified three capital variables based on a
software tools classification and rating scheme defined by
Boehm ([3]. Each respondent in the survey indicated the
availability and usage of the software productivity tools as
described in Table 27-7 of [3], plus several additional tools
that were developed and employed subsequently. In order to
ensure definitional consistency across all respondents, a
glossary of terms concerning each of the tools was provided
with the survey instrument. We used a modification of
Boehm's rating classification scheme. Those tools that were
described as being low and very low were aggregated into a
single rating category. The same grouping strategy was
executed for those tools that Boehm labeled high and very
high. Hence, we have three tool categories: 1low, nominal,
and high. The tools and the groupings are listed in Table 2.

III. MODELS OF RETURNS~-TO-SCALE

To analyze returns-to-scale for the sample of new
software projects, we estimate several models. First, we
estimate the parameters of a ray-homothetic production
function [8]. This specification is flexible, and it permits
returns-to-scalejgtovarywith,respect to output and input mix
(i.e., the tools/labor ratio).
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Software Tools Rating Scale

Ratings Tools?

Low

Nominal

High

Assembler, Chief Programmer
Team, Configuration
Management, Database Aids,
Batch Debuggers, Programming
Support, Time Sharing
Operating System,
Performance Measurement and
Analysis Tools.

HOL Compiler, Project and
Data Entry Control Systems,
Data Dictionaries,
Interactive Debuggers,
Source Code Formatters,
Report Generators, Screen
Generators, Reusable Source
and Object Code Library
System, Virtual Memory
operating System, Macro
Assembler, Text Editorand
Manager.

Cross Compiler, Conversion
Aids, Database Design Aids,
DBMS, Distributed
Processing, Active
Documentation Tools, Failure
Analyses Tools, Formal
Verification, Display
Formatters, Code Generators,
Application Generators,
Integrated Computer Assisted
Software Engineering
Environments, Local Area
Networks, Program Design
Language and Tools,
Requirements Specification
Language and Analyzer,
Interactive Source Editor,
Automated Verification
System, Expert Systems
Applications to Software
Engineering, Instruction Set
Simulators, Regression
Testing, Restructing Tools
and Test Coverage Analyzers.

aThisplistingrcontainsythestools presented in [3], plus
tools developed subsequent to Boehm's original work.
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There is no assumption that larger projects require a
larger number of unique tools. Optimal project size varies
with input mix. However, we expect the capital/labor ratio
to be high for smaller projects; if for no other reason,
because tools may be shared on larger projects. We could
make a stronger statement about scale if we have more
information about how the tools were actually used, but our
data is not sufficiently rich to match unique tools to unique
labor units. This is a standard problem in production
function specification and parameter estimation.

We demonstrate with the ray-homothetic model that the
software productivity tools have an impact on scale. We also
confirm this result with a less restrictive nonparametric
linear programming approach (see [1] and [6]). In section IV
we use the results of these analyses to define results which
are of use to software development project managers. We also
show that there is significant variation in tool marginal
productivity, a result that has implications about which
tools to employ.

A. The Ray-Homothetic Model

The ray-homothetic production function can be written
as:

1‘1 KZ 1(3
a R a BT
’

a _£’ Qg —
0 =1n (B'K “Sex, t Sek, S oK,

where s = K; + K, + K; +L and 6, a ;s agr agor and a,; are
parameters to be estimated. The general properties of the
above equation are discussed by Fdre [8]. Most importantly,
this function is ray-homothetic and contains homothetic and
homogeneous production functions as special cases.
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To examine returns-to-scale and optimal output, the
elasticity definition of returns-to-scale is applied to the
production function to obtain the following expression for
returns-to-scale:

As usual, RTS > 1 indicates increasing returns-to-scale, RTS
= 1 1indicates constant returns-to-scale, and RTS < 1,
decreasing returns-to-scale. Optimal or ideal scale is
obtained when constant returns-to-scale prevails, i.e., when
RTS = 1. Thus, optimal scale is given by

OPTQ = ao£+a 0_}_.(.l+a oi(.2_+a 0._'K_3
L'g "k g "k g K g*

These measures indicate that returns-to-scale and optimal
scale (from the ray-homothetic production function) vary with
output level and input mix. For example, if the estimated
parameter for a particular input is less than zero, then the
magnitude of scale economies declines with increases in the
corresponding input's proportion of the total inputs. To
estimate the parameters of the ray-homothetic production
function we augment the function with an error term, u, as:

_ L K K K,
Q= ln9+aL-§01n L+axl°—sl-1n Kl+a,(2-?201n K2+aK3-?0ln
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B. The Linear Programming Model

For the linear programming approach a reference
technology is constructed from observed inputs and outputs.
Let X be a (nxm) matrix of observed inputs (n inputs for m
software projects) and Q be a (1lxm) vector of observed output
rates for each of the m software projects. Let superscript
i define a particular software project contained in X and Q.
Let X' be a (nxl) vector of observed inputs on project i. The

maximum potential output is defined by:

F(X') = Max Qe3

ST: XeZ < X!
Z2>0

The (mxl) vector Z contains the intensity variables. This
linear program is solved once for each software project. The
linear programs only differ in the right-hand-side vector
which contains the observed inputs on a particular software
project, i.

1f z2° = (24/25,.+..,2,) is the optimal intensity variable
vector, then following Banker ([1], a project exhibits
Constant Returns-to-Scale (CRS), Increasing Returns-to-Scale
(IRS), or Decreasing Returns-to-Scale (DRS) according to the
following:

CRS iff SCALE
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m
DRS iff SCALE = Y zi > 1.
i=0

IV. EMPIRICAL RESULTS
A. Ray-Homothetic Model

The production function model can be estimated using
ordinary least squares without simultaneous equation bias if
we assume that the observed data were generated under the
conditions of expected profit maximization (see [4] and
(131). The least squares regression results are given in
Table 3.

Table 3. Regression Results

Parameter Estimate t-ratio
0 -1011.55 -2.97
a 232.60 4.31
ayy 1571.57 1.54
ay, 959.09 0.66
ayz 1496.06 0.65
n = 37 R = .45

In addition to the intercept, the coefficients on labor
and the low-level productivity tools are significant. All of
the estimated input coefficients are positive, indicating
that increasing the relative importance of any one input has
a positive effect on optimal size.

Using the parameter estimates and the input/output data,
we computed RTS and OPTQ for each software development
project. These estimates are given in Table 4, along with
the observed output rate and the capital-labor ratio. From
these estimates of returns-to-scale we observe that 8
projects operate under,decreasing returns-to-scale, while 29
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are operating under increasing returns-to-scale; i.e., actual
output is 1less than optimal.
between RTS and the characteristics of software projects,

descriptive statistics for output, and the

optimal output,

observed input mix, K/L, are given in Table 5.

To examine the relationship

Table 4. Results for the Ray-Homothetic Model

Project Q OPTQ Scale Type K/L
1 130.0 299.8 2.3 IRS .055
2 400.0 302.1 .8 DRS .059
3 68.0 470.3 6.9 IRS .458
4 75.0 281.4 3.8 IRS .025
5 12.0 512.6 42.7 IRS .611
6 20.0 324.7 16.2 IRS .100
7 45.0 395.8 8.8 IRS .250
8 75.0 279.8 3.7 IRS .022
9 200.0 277.0 1.4 IRS .018
10 147.0 292.8 2.0 IRS .043
11 1098.0 268.7 .2 DRS .004
12 1500.0 288.9 .2 DRS .037
13 1500.0 267.2 .2 DRS .002
14 300.0 276.2 .9 DRS .016
15 22.0 566.2 25.7 IRS .857
16 45.0 303.8 6.8 IRS .062
17 114.5 270.6 2.4 IRS .007
18 194.0 283.9 1.5 IRS .029
19 102.0 269.1 2.6 IRS .005
20 250.0 283.6 1.1 IRS .028
21 212.0 267.7 1.3 IRS .003
22 84.0 297.1 3.5 IRS .050
23 41.2 342.1 8.3 IRS .133
24 37.9 428.4 11.3 IRS .333
25 200.0 344.9 1.7 IRS .138
26 5.0 395.8 79.2 IRS .250
27 194. 395.8 2.0 IRS .250
28 50.0 311.7 6.2 IRS .076
29 20.0 482.7 24.1 IRS .500
30 90.0 354.6 3.9 IRS .158
31 10.0 350.5 35.1 IRS .150
32 140.0 307.8 2.2 IRS .069
33 30.0 535.6 17.9 IRS .708
34 700.0 277.5 -4 DRS .018
35 25.0 406.0 16.2 IRS .275
36 2000.0 273.2 .1 DRS .012
37 500.0 270.3 .5 DRS .007
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Projects characterized by increasing returns are, on average,

the smaller

(in terms of 0Q);

the largest project with

increasing returns has 250 thousand lines of code. The

projects

characterized by

increasing

returns have, on

average, higher capital-labor ratios than the eight projects

which operate under decreasing returns.

Table 5. Statistics by RTS Results for the
Ray—-Homothetic Model

Variable Mean
IRS (n=29)
SCALE 13.010
Q 90.980
OPTQ 377.410
K/L .195
DRS (N=8)
SCALE .390
Q 999,750
OPTQ 253.600
K/L .019

SCALE

OPTQ
K/L

B. Nonparametric Linear Programming Approach

TOTAL (N=37)

10.290
287.470
350.640

.157

St.Dev. Minimum Maximum
18.760 1.000 84.800
72.700 5.000 250.000
139.300 236.300 713.300
.224 .003 .857
.270 .120 .840
621.000 300.000 2000.000
189.800 235.300 293.400
.018 .002 .059
17.370 .120 84.770
472.170 5.000 2000.000
133.560 235.280 713.330
.211 .002 .857

In order to

development tools,

isolate the effects

of the software

the 37 linear programs were analyzed two
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ways. The models were solved with four factor inputs: labor,
high-level tools, nominal tools, and low-level tools. For
the second approach the models were solved using only labor
as an input. This specification was basically for comparison
with Banker and Kemerer [2] and some of the earlier
literature that they cite. In the analysis that follows, the
four input model is called the full model, while the single
input model is called the reduced model. The scale estimates
from the 37 linear programs are summarized in Tables 6 and 7,
and the individual estimates are presented in Table 8.

Table 6. Statistics by RTS Results for the Full Model

Variable Mean St. Dev. Minimum Maximum
IRS (n=24)

SCALE .550 .194 .213 .921

Q 93.525 83.463 5.000 300.000

K/L .189 .251 .003 .857
DRS (N=8)

SCALE 1.260 .307 1.005 1.966

Q 394.125 364.741 25.000 1098.000

K/L .092 .094 .005 .275
CRS (N=5)

SCALE 1.000 .000 1.000 1.000

Q 1047.800 873.246 45.000 2000.000

K/L .110 .128 .250 .057
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Table 7. Statistics by RTS Results for the Reduced Model

Variable Mean St .Dev. Minimum Maximum
IRS (n=7)

SCALE .550 .137 .292 .667

Q 27.843 20.764 5.000 68.000

K/L .531 .212 .250 .857
DRS (N=28)

SCALE 22.172 31.917 1.111 138.889

Q 364.382 520.626 10.000 2000.000

K/L .058 .063 .003 .275
CRS (N=2)

SCALE 1.000 .000 1.000 1.000

Q 119.500 105.359 45.000 194.000

K/L .250 .000 .250 .250

The results are quite different for the two models
(which is expected), but in either case increasing returns
are usually associated with the smaller projects, just as
Banker and Kemerer hypothesized.

The tools delay the onset of diminishing returns. The
average size of projects exhibiting constant returns-to-scale
is 119.5 when labor is the only productive input. The
average size increases to 1047.8 when the tools are included

in the production specification.
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Table 8. Returns-to-Scale Results for the
Linear Programming Model

Project Q Scale Estimate Type Scale Estimate Type

(Full Model) (Reduced Model)
1 130.0 .583 IRS 4.500 DRS
2 400.0 1.307 DRS 8.861 DRS
3 68.0 .667 IRS .667 IRS
4 75.0 .363 IRS 10.000 DRS
5 12.0 .500 IRS .500 IRS
) 20.0 .548 IRS 1.667 DRS
7 45.0 1.000 CRS 1.000 CRS
8 75.0 .294 IRS 8.667 DRS
9 200.0 .504 IRS 16.972 DRS
10 147.0 .682 IRS 8.889 DRS
11 1098.0 1.025 DRS 90.278 DRS
12 1500.0 1.000 CRS 20.833 DRS
13 1500.0 1.000 CRS 138.889 DRS
14 300.0 .426 IRS 15.000 DRS
15 22.0 .292 IRS .292 IRS
16 45.0 .643 IRS 4.000 DRS
17 114.5 .410 IRS 24.611 DRS
18 194.0 .346 IRS 8.611 DRS
19 102.0 .312 IRS 24.917 DRS
20 250.0 .772 IRS 19.444 DRS
21 212.0 .213 IRS 25.000 DRS
22 84.0 .653 IRS 6.000 DRS
23 41.2 . 796 IRS 1.667 DRS
24 37.9 .667 IRS .667 IRS
25 200.0 1.005 DRS 2.000 DRS
26 5.0 .557 IRS .557 IRS
27 194.0 1.000 CRS 1.000 CRS
28 50.0 .891 IRS 4.000 DRS
29 20.0 .500 IRS .500 IRS
30 90.0 1.966 DRS 3.333 DRS
31 10.0 .921 IRS 1.667 DRS
32 140.0 1.151 DRS 6.000 DRS
33 30.0 .667 IRS .667 IRS
34 700.0 1.216 DRS 40.000 DRS
35 25.0 1.111 DRS 1.111 DRS
36 2000.0 1.000 CRS 41.667 DRS
37 500.0 1.302 DRS 82.222 DRS

The relationship between size and scale is further
examined in Table 9 where Spearman's correlation coefficient
(r) between size and scale is estimated for both models. The
values in the parentheses are the probabilities of observing
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a larger estimated r (in absolute value) under the null
hypothesis that the population correlation coefficient is

zero.

Table 9. Spearman Correlation Estimates
Between Size and Scale

Full Model Reduced Model
r = .434 r = .843
(.0073) (.0001)

We note that these results are not uniform
over the complete data set. The projects were sorted on size
and split into two groups. The small group contains the 18
smallest projects, and the large group contains the 19
largest projects. The correlation results for these data

sets are presented in Table 10.

Table 10. Spearman Correlation Estimates
Between Size and Scale

Full Model Reduced Model
Small r = ,037 r = .687
(.8850) {.0016)
Large r = .454 r = ,586

(.0510) (.0084)
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With the reduced model, the linear relationship between
size and scale cannot be rejected, but in the presence of the
productivity tools the relationship breaks down for the small
projects.

C. The Effects of Hardware

None of the models examine the way that hardware affects
scale. A more detailed model would include capital inputs
that relate to hardware. These measures should consider
peripheral devices as well as central processing units. In
a production sense, if hardware were a limiting factor, it
should create a congestion effect on the production process.
One would expect these effects to show up more in the
peripherals then in the processors, but we have no way to
measure congestion effects in either case.

However, we do have some information about hardware
effects. In the survey [10]), several questions were asked
that give some insight into hardware effects. Each
respondent was asked the following question: "Does your
hardware limit what software can be employed?" If the answer
to this question is affirmative, then this measure could be
considered a proxy for congestion. A second question related
to hardware classification. Each respondent was asked to
classify hardware as satisfactory, obsolescent, or obsolete.
In the survey glossary, obsolescent was defined as "becoming
obsolete," and obsolete was defined as "outmoded."

Only one respondent classified the hardware as obsolete,
so for the analyses that follows, the obsolete and
obsolescent data were combined. Table 11 provides a
description of the sample according to the classification
based on the two hardware questions. We note that 28 of the
'37 projects have consistent responses to the two questions in
the sense that if hardware is obsolete, then there is a limit
on software, or if hardware is satisfactory, then there is no
limit on software. Theobservations in the off-diagonal

classes are not necessarily inconsistent. For example,
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hardware could be considered obsolete but not a limiting
factor in software development. We do, however, analyze the
returns-to-scale results for both questions. This comparison
is provided in Table 12. 1In general, there is no consistent
pattern in the relationship between classifying observations
based on returns~to-scale status and the classification by
responses to hardware status questions.

Table 11: Responses to Hardware Survey Questions

Hardware Limit on

Software
Status of Hardware Yes No Total
Obsolete/Obsolescent 9 2 11
Satisfactory 7 19 26
Total 16 21 37

Number of Observations With
IRS CRS DRS Average Scale

Hardware Limit

Yes 10 3 3 .79

No 14 2 5 .74
Hardware Status

Obsolete 6 3 2 .85

Satisfactory 18 2 6 .73

The obvious extension is to determine which tools have
larger —marginal _productivity with respect to potential
output. This is accomplished by examining the dual variables
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from the 37 linear programs. Let Y,, ¥,, ¥;, and ¥, represent
the dual variables for labor and tool categories 1-3
respectively. Also let U represent the dual variable for
labor in the single input model. The descriptive information
on the optimal dual variables is presented in Table 13.

Table 13. Linear Programming Dual Variables

Variable Mean St. Dev. Minimum Maximum
Y, 1.48 1.47 .00 5.38
Y, 19.87 43.14 .00 161.50
Y 13.53 30.12 .00 166.67
Y, 56.68 82.27 .00 227.94
U 5.38 .00 5.38 5.38

The surprising characteristic of this table is the large
marginal productivity of the higher-order tools. The marginal
change in potential output for these tools is (on the
average) larger. In our future research we are studying the
characteristics of the projects for which additional higher-
order tools generate large increases in potential output.

V. CONCLUSIONS

The results of this paper are two-fold. First, we confirm
earlier research that suggests that increasing
returns-to-scale are associated with small software
development projects and decreasing returns-to-scale are
associated with larger projects. Second, our results
indicate that when software productivity tools are included
in the model, the project size that is associated with the
onset of diminishing returns is much larger. Our results
‘also indicate that in general the higher level tools have
larger marginal productivity with respect to potential
output.
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AN ECONOMICS MODEL OF SOFTWARE REUSE

R.D. Cruickshank and J.E. Gaffney, Jr.
Software Productivity Consortium
2214 Rock Hill Road
Herndon, VA 22070

INTRODUCTION

Much attention has been paid to software reuse in recent years because it is recognized
as a key means for obtaining higher productivity in the development of new software
systems (Gaffney and Durek 1988; Gaffney and Durek 1991; and Gaffney 1989). Also,
software reuse has provided the technical benefit of reduced error content and thus
higher quantity. The primary economic benefit of software reuse is cost avoidance.
Reuse of an existent software object generally costs much less than creating a new
software object.

The reuse economics model presented here should be regarded as a tool to aid in the
exploration of the economic benefits of software reuse but not as an algorithm that covers
all possible cases of reuse. The framework provided will aid the analyst and the project
manager in making decisions about software reuse. The model covers various topics, in-
cluding the effect of various strategies of investing in the creation of reusable software ob-
jects (RSOs), the cost effects of reusing requirements or design in addition to the costs
of reusing code, and the effects of reuse on software quality.

OVERVIEW

Software reuse can occur at many levels, ranging from the reuse of small granules of
function (small software objects) within an application system to the reuse of large
granules of software function (large software objects) across many application systems.
For example, in an antiballistic missile system, the filtering routine in the signal pro-
cessing function is a small granule while the location and tracking function is a large
granule. The reuse methodology covers a wide range, from the ad hoc level of reuse
of code to the systematic reuse of software based on an application domain.

Reuse within an application system often takes place as the multiple use of a unit (or
granule as above), such as a routine to implement a sine function or a finite impulse
response filter, in a number of the major functions of that system. This type of reuse
or multiple use of a software object has been common since FORTRAN began to be
used. Multiple use within a system is facilitated in Ada through the use of the with and
include constructs.
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The reuse economics model presented here focuses on the systematic reuse of RSOs
having a relatively large amount of functionality. These RSOs are not typically used
more than once in a given application system. Systematic reuse is concerned with defin-
ing and establishing a domain of software systems, i.e., a family of software systems hav-
ing similar descriptions (Parnas 1976). Such a family is a set of systems with similar
requirements that can be (or are) satisfied by a common architecture and represent a
set of closely related design choices at the detailed level. A domain is a coherent busi-
ness area and the application area corresponding to the family of systems. A domain
model characterizes an application family.

The benefits of establishing such a software domain are that software engineering and
domain expertise are captured in a manageable form, and this knowledge can be used
to produce families of similar application systems. As shown by Parnas, large (function-
al scale) RSO reuse can be sequential (from one application system to another) or par-
allel. In the latter case, a common set of RSOs may be used by several application
systems which could be developed in parallel or sequentially. This type of reuse might
actually be better termed multiple use. The Synthesis development methodology
(Campbell 1990; Campbell, Faulk, and Weiss 1990) is concerned with this type of reuse.

The principal economic benefits of software reuse are:

* Lower development costs.

* Higher software product quality due to multiple testing and error removal
opportunities reused over a number of application systems.

* Reduced development schedule due to a reduced amount of development
work.

¢ T ower maintenance costs due to lower levels of error creation.

¢ Reduced life-cycle costs due to reduced development and maintenance costs.

Systematic reuse views software maintenance as a series of redevelopments (i.e.,
incremental refinements) of application systems.

SYSTEMATIC REUSE

The reuse economics model presented here focuses on the systematic reuse of
large-scale functional units. Systematic reuse in the reuse economics model is viewed
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as consisting of two principal activities: domain engineering and application engineer-
ing. Domain engineering is the set of activities that are involved in creating RSOs that
can be employed as a plurality of specific software systems or application systems.
Application engineering is the set of activities that are involved in creating a specific
application system.

Domain engineering is regarded in the economic model presented here as covering the
capital investment required to create a set of RSOs. Thus, domain engineering in-
cludes the capital investment activities necessary to produce a family of application sys-
tems. In domain engineering, the requirements for the family of software systems are
identified, and the reusable structure to implement the family members is developed.

Capital investment here means the initial investment in terms of effort to create the
means to produce application systems before those application systems are actually
produced. This investment may be made all at once for the entire domain investment,
or it may be made incrementally over the life of the domain, i.e., as long as the domain
is used to produce application systems. The effort spent in domain engineering is a capi-
tal investment in creating the domain, including the domain definition and models, the
application modeling language, and the reuse library. The term capital investment here
does not imply any specific contractual arrangement.

Domain ENGINEERING

Domain engineering is the capital investment process for creating the RSOs for a
family of similar systems. It may be done up-front, all at once, or incrementally, over
part or all of the time period. The family of application systems, which include some
of the RSOs created by the domain engineering processes, is created in this same time
period. Domain engineering includes all of the activities associated with identifying a
target family of application systems, describing the variation among these systems, con-
structing an adaptable design, and defining the methods for translating requirements
into application systems composed of reusable components.

Domain engineering may not occur in some modes of reuse. One such mode is the ad

“hoc reuse of software objects that were created for another system. Such objects can
include requirements and/or design and/or test plans as well as code. Alternatively,
although domain engineering may occur, its cost may not be a consideration to the
application system developer because it is borne by someone else. An example of this
is when a government agency provides the RSOs produced by one contractor to another
contractor tasked with developing an application system.
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As shown subsequently, the costs of domain engineering may be amortized in different
ways. The simplest way is to spread them across all of the application systems. Other
methods include spreading some of them over one subset of the application systems
or another part over another subset. The latter scheme is probably the more realistic.
Itis often difficult if not impossible to anticipate all of the possible variations that might
occur across a set of application systems before any are built. In addition, it may be diffi-
cult to obtain sufficient funding to cover all of the domain engineering required for the
family of application systems.

ArrLicaTioN ENGINEERING

Application engineering is the process of composing a particular application software
system which is a member of the family of systems defined in the domain engineering
process. Application engineering consists of composing the specific application system
with RSOs and any new software needed, reengineering existent software required, and
testing the system. Thus, application engineering is a process for producing quality soft-
ware from reusable components. The application systems are generated from reusable
components to implement all of the associated requirements definitions.

Application engineering may be summarized as:

* Transforming the customer’s input into a requirements specification for the
specific application system to be developed.

* Generating new software objects specific to this application system, some of
which may be reusable in other application systems and which may be entered
into the reuse library.

* Composing the application system by integrating the new software objects and
the reusable software objects obtained from the reuse library. The reuse eco-
nomics model presented here considers any modified code to be in the new
code category.

THE BASIC ECONOMICS MODEL OF SOFTWARE REUSE

This section presents the basic model of software reuse. It describes the basic model
with up-front domain engineering. The version of the model which covers incremental
domain engineering is described later.



103

MobEL ASSUMPTIONS

The assumptions implicit in the reuse economics model are:

Costs may be measured in labor months (LM) or labor hours (LH) which can
be converted to dollars as appropriate.

The true development cost for a new application system consists of the
investment costs in domain engineering (apportioned over the expected num-
ber of application systems to which it applies) plus the cost of application
engineering specific to the given application system.

It is important to note that a development organization under some
circumstances may not take the cost of domain engineering into account. One
such situation is when a government agency provides the results of domain en-
gineering to a contractor developing new application system as government-
furnished information.

A new application software system is composed of two categories of code, new
and reused.

A variety of software objects, including requirements, design, code, test plans,
and test steps, may be reusable.

The cost (in LM) of software development activities can be calculated as the
product of a labor rate (LM divided by the size of the software product) and
the size (in thousands of source statements) of the software product.
Algebraically, this concept is represented by:

LM = (LM/KSLOC)(KSLOC)

Reuse Economics MopeL With Up.Front Domain ENGINEERING

The reuse economics model is designed to reflect the total costs of applying a reuse
scheme. The model treats the cost of an application system as the cost of the capital
investment in domain engineering apportioned over the expected N application sys-
tems plus the cost of application engineering (the cost of creating that particular sys-
tem). Thus, the cost of an application system, Cg, equals the prorated cost of domain
engineering plus the cost of application engineering. Further, the cost of application
engineering is the cost of the new plus the cost of the reused code in the new
application system. Then:
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where:

Cp
Cp
P

Ca
Cn
Cr

Cs = Cpp + Ca

Cs=Cp/N + Cy + Cr

Cpp = Cp/Nand Cy = Cy + Cr

The total cost of domain engiheering.

The pro rata share domain engineering borne some by each of the N
application systems.

The cost of an application system.

The cost of the new code in the application system.

The cost of the reused code in the application system.

Now, each of the costs, Cp, Cn, and Cg, is the product of a unit cost (LM/KSLOC)
and an amount of code (KSLOC). Note that all costs are in LM.

Then:

Cp = Cpg- St
Cn =Cyn-*SN

Cr =Cvr* SR

Therefore the basic reuse cost equation is:

where:

Cus
Cpe

Cvr

St

Cs = Cys Ss = Cpe St/N + Cyn SNy + Cvr Sr

= Unit cost of the application system.

Unit cost of domain engineering.

= Unit cost of new code developed for this application system.

= Unit cost of reusing code from the reuse library in this application

system. It represents the unit cost of reused code in the case where
the library components can be instantiated directly into the
application system with no modification.

Expected value of the unduplicated size of the reuse library, i.e., the
available, reusable functionality (source statements) in the library.
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SN = Amount of new code in source statements developed for this
application system.

Sr = Amount of reused code (from the reuse library) incorporated into
this application system in source statements.

Ss = Total size of the application system in source statements.

Code sizes SN, SR, Ss, and St are nominally denominated in source statements, either
physical or logical (see Gaffney and Cruickshank 1991a; Gaffney and Cruickshank
1991b). These code sizes could be denominated in function points (Albrecht and Gaf-
fney 1983) or their variations, such as feature points. The important thing is that
consistent units of code size be employed.

Let SN/Ss = 1 - R and Sg/Ss = R, where R is the proportion of reuse.

Dividing through by Sg and rewriting:

N S

Now let ST/Ss = K, the library relative capacity. Thus:

C L L]
CUS = % K+ CVN_(CVN—CVR) R
This is the basic reuse unit cost equation. It presumes a single reuse of SR units (SLOC,
KSLOC, function points) in each of the N application systems, on the average. Thus,
this equation is most applicable to systematic reuse of units of code having a relatively
large amount of functionality.

Some of the software developed for a given application system, of amount Sy, might
be deemed reusable on other application systems. Such software may be treated as
resulting from a portion of an incremental domain engineering investment.

Although not treated further here, the unit cost parameters (Cyn, Cvr, and Cpg) can
be considered to be time-variant. Thus, they can represent the effects of technology
change (methodology and tools) over time. These parameters are considered to be
time-invariant here.

Lierary ErrFiciency

This section discusses some aspects of the structure of a reuse library from an economics
point of view.
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A reuse library may be constructed so that there are a number of duplicate or alternative
objects to cover the expected variation of a unit of function. Alternatively, there may
be just object per function, but with the expected variation to be covered by the (application
engineer’s selection of the) values of one or more parameters to cover that variation.

Stis the “unduplicated” size of the library or its capacity. There may well be alternate
or duplicate implementation functionality in the reuse library (source code, as just
stated), but that alternate or duplicate functionality will not add to the size of St. The
case of alternative implementation of source code or all of the functionality of size St
is covered in the cost model by an appropriate selection of the value of the unit cost
parameter, Cpg.

The factor K (= St/ Sg), the library relative capacity, represents the average proportion
(over the N application systems) of an application system in the family of systems that
the library covers. Thus, if Sg represents the average application system size in the
domain of interest, K is the upper bound for R, orR < K < 1.

The efficiency of the library infrastructure, E, is the ratio of the amount of reused code
in the application system to the available reusable code:

"K S /S St
where 0 < E < 1.

The factor E indicates the extent to which the developer of a new application system
has been able to make use of the library of reusable components in the new system.
For example, the reuse library may contain a Kalman filtering program and a navigation
program that contains a Kalman filtering routine. If the Navigation program is selected
(perhapsbecause it contains a Kalman, filtering routine) to be be used in an application
system, then the efficiency of the library for that specific application system is less than
1.0 because the alternate (or duplicate) Kalman filtering program was not used.

E is a measure of the efficiency of the systematic reuse application process. Normally,
E is 1.0 or slightly less than 1.0, since application engineers on average are expected
to reuse as much code as possible when composing an application system.

If Kisassumed to be equal to R, or Sg = St (which meansE = 1), then the basicreuse
unit cost equation can be rewritten as:
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Cus = %'R + Cyn-(Cyn-Cwvp)'R

Consolidating terms obtains:

Cus = Cun- (CVN—CVR'%)R

This equation is the standard reuse unit cost equation.
Some ExampiLE ArpLicaTions oF THE MODEL

This section provides three example applications of the basic reuse unit cost equation.
The three examples are an Ada aerospace system, a real-time command and control
(RTCC) application, and a management information system (MIS) application. These
applications have the values Cpg, Cyn, and Cyg given in LM/KSLOC appropriate to
a specific instance of domain and application engineering. The labor rates for Cyy and
Cyr are derived from actual RI‘CC, MIS, and Ada development experience. The labor
rates for Cpg are based on analysis of the functions included in domain engineering
for the RTCC and MIS applications. In the case of the Ada aerospace application, a
value of 1.5 for the ratio of Cpg to Cyy is assumed. The RTCC labor rates (unit costs)
are derived from experience based on a DOD-STD-2167A model translated to a sys-
tematic reuse model. The MIS labor rates (unit costs) are based on experience with
SPECTRUM* and with function points translated to the systematic reuse model
derived above.

\
Table 1 shows the unit costs (in LM/KSLOC) of the two cost configurations.

Table 1. Cost Parameter Applications

Application (LM/KSLOC)
Cost Parameters RTCC MIS Ada Aerospace
Coe 5.305 2.122 15.000
Cwvn 2072 1012 10.000
Cwr 0.514 0.271 1.000

_Thus, the two parametric configurations of the systematic reuse unit cost equations
are:

RTCC: Cys = Sili.K + 2.072-1.558'R

* Trademark of Software Architecture and Engineering Inc.
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MIS: Cys = %'K + 1.012-0.741'R

Ada aerospace: Cys = -li%m'K + 10.000 - 9.000°R

Table 2 shows the productivities (in SLOC/LM) resulting from these configurations
under the assumption that E = 1or K = R.

Table 2. Reuse Economics Model Application Productivities

(E = 1.0) " Application (SLOC/LM)

N R RTCC MIS Ada Aerospace
2 0.7 352 809 112
2 0.9 327 769 116
3 0.7 451 1,011 139
3 0.9 442 1,018 156
4 0.7 524 1,156 158
4 0.9 537 1,215 190
5 0.7 580 1,265 172
5 0.9 615 1,375 217
10 0.7 739 1,557 211
10 0.9 872 1,864 308
15 0.7 814 1,687 227
15 0.9 1,012 2,115 357

Table 2 illustrates the cost and productivity benefits to be gained from systematic reuse.
Available data shows industry productivities for new software development (design
through integration test) tobe in the range of 80 to 180 SLOC/LM (12.500 to 5.556 LM/
KSLOC). The reuse productivities in Table 2 show a considerable improvement over
these performances.

Also note that, where the value of R increases in Table 2, the productivity actually
decreases for certain values of N. This result is contrary to intuition, which would ex-
pect increasing productivity to accompany increasing values of R. However, where the
number of expected application systems is less than the break-even number of systems,
decreasing productivity accompanies an increasing proportion of reuse. This phenomenon
is discussed later, where the concept of break-even number of systems is introduced.
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SomEe Recent Reuse EXPERIENCE

This section provides some data on recent reuse experience. Because no formal domain
engineering was done in the composition of these systems, the value for Cpg was set at
zero. The systems were done in sequence, with software objects being reused (and
modified in some cases) from a prior system in creating a new software application system.

ManaGEMENT INFORMATION SYsTEMS

Allan Albrecht (Albrecht 1989) provided some worldwide reuse experience from IBM
in the development of MIS applications during the period of 1984 to 1988. The data
is in the form of function point and productivity measurements on software created for
internal IBM applications such as billing and ordering. The applications were written
in PL/1. One function point (Albrecht and Gaffney 1983) is equivalent to about 80 lines
of PL/1 or 106 lines of COBOL. The 1988 reuse data analyzed here was determined
from about 0.5M function points from more than 50 development sites, worldwide.

Figure 1 presents this function point data on overall product productivity, new code
productivity, and average percent reuse. The overall product productivity and the percent
code reuse figures are for the years 1984 to 1988. The new code productivity figures are
for 1986 to 1988; data for the 1984 to 1985 period was not available. Note that overall pro-
ductivity is equal to total function points in the software system divided by total LM, while
new code productivity is equal to function points of new code per LM for new function
points. Table 3 shows the data to which the histograms correspond.

Table 3. Productivity and Reuse Experience

Overall Productivity (P) New Code Productivity Average Percent
Year Function Points/LM (N) Function Points/LM Code Reuse (R)
1984 22 — —
1985 20 — —
1986 25 14 315
1987 32 18 40.0
1988 49 23 67.2

'Table 4 shows the partial correlations for the years 1986 to 1988 among the three
variables shown in Table 3 and the corresponding figures for 10012, the percentage vari-
ation of one variable explained” by its relationship to the other and corrected for the
third. Partial correlations indicate the correlations between two variables while holding
the third constant, i.e., correcting for the third.
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Figure 1. Worldwide Productivity and Reuse Experience
Table 4. Partial Correlations Among Variables, 1986 to 1988
Variables
Correlated Held Constant Correlation r 100r2
PR N 0.9982 98.36
PN R 0.9854 97.10
RN P -0.9736 94.79

The strong partial correlations indicate that both the new code productivity (N) and
the percent code reuse (R) had a strong influence on the increase in overall productiv-
ity (P) in the years 1986 to 1988. Table 5 shows the percent increase in each variable.

There was an increasing degree of code reuse over the period shown, both from the
reuse of code and from the new code. This was partially based on the reuse of existing
requirements or design so that the increase in overall productivity was strongly
associated with both types of reuse.
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Table 5. Percent Increase of Variables, 1986 to 1988

Variable Percent Increase
P 96
N 64
R 113

Figure 2 presents a plot of unit cost, Cys, in LM per function point multiplied by 100,
versus the proportion of code reuse for the software development sites reporting in
1988. The data was grouped into six ranges of reuse plus the point (0.0,5.41), as
presented in Table 6.

CUS

o = Points on fit
x = Actual data

LM Per Function Point Times 100

A
L] ”

0 01 02 03 04 05 06 07 08 09 1 R
Proportion of Reuse

Figure 2. Cost Per Product Unit for 1988
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Table 6. 1988 Product Unit Costs Versus Proportion of Code Reuse

Proportion of Reuse, R (LM/Function Point) Times 100
0.0 541
0.1 485
0.3 7.19
0.5 2.35
0.7 1.63
0.9 0.63

The product moment sample correlation of Cyys and R was found to be -0.832 (significant
at the 5 percent level) which means that 69.16 percent of the variation in Cys, the overall
product unit cost, was “explained” by its relationship with R, the proportion of reuse. The
regression equation was:

CUS = 6.188 - 6.027.R
Cvr should not be estimated from the relationship:
CUSi = CVN _(CVN - CVR).R + €;

i.e., using the relationship based on least squares regression as shown previously. Instead
the statistical cost relationship:

CAi = CVN. SNi + CVR.SRi + €

based on the general linear hypothesis of full rank can be used to calculate values for
Cyn and Cyp.

In order to get a more complete picture of the costs involved in reuse, as was stated
earlier, the cost of reusable code creation and the cost of domain engineering must be
determined (and, presumably, amortized over the set of users).

Aerospace

Figure 3 shows the total unit cost in LH/SLOC, Cys, plotted against the percent of
codereuse, R, for eight aerospace applications. (The 0 percent data point is the average
of five points, 0.6433 LH/SLOC.) A straight line has been fitted using linear regression,
and the fitted equation is:
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Cus = 0.7850 - 0.009435'R
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Figure 3. Unit Cost as a Linear Function of Percent Reuse

The correlation of Cys and R is r = -0.785, which means that 100r2 = 61.54 percent
of the variation in Cyg is explained by its relationship with R. It is obvious from this
data and from the fitted line that unit cost declines with an increasing proportion of
reuse.

Figure 4 shows the same data as in Figure 3 with a quadratic form fitted. The equation
is:

Cus = 0.920-0.0239°R + 0.00016114°R?

Here the multiple correlation of Cys with R and R2 is r = -0.846. Thus, the quadratic
equation in R provides a better fit than shown in Figure 3 since only 1002 = 71.6 per-
cent of the variation in Cyg is explained by its relationship to R and RZ in that case.
The goodness of this relationship suggests that, in some reuse regimes, the unit cost
of software products decrease with increasing levels of reuse but then increase beyond
a certain level of reuse. Perhaps the nature of the reuse process becomes less efficient
beyond this point.
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RETURN ON INVESTMENT

This section defines the break-even number of systems for the case in which all of the
domain engineering is done “up front” as assumed in the basic reuse unit cost equation.

Break-Even Number of Systems

Reuse pays off when the unit cost of an application system which includes reused soft-
ware is less than or equal to the unit cost of an implementation in all new software.
Therefore, the break-even number of systems, Ny, is the value of N when Cyg = Cyn.
Using the basic reuse unit cost equation previously developed:

CUS = CVN - (CVN - CVR)R + KC—NDEE‘
and dividing through by Cyn produces:

Cus CVN_CVR CDE
C=——=1- R+ —K
( Cun ) Cw' N
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The break-even point occurs when C = 1. Let the number of application systems
required to break- even be Ng. Then:

Cwr Co
0=-{1-RIR+ 2 K
(-G oot
CDE
Ny=—"22%
* (Cw-Cw'E

where E = R/K is the efficiency in the use of the library content, R = Sg/Sg and
K=S871/Ss, ST < Ss, R < K, and SR < St. Table 7 shows the break-even number of
systems for values of E and for two applications previously discussed.

Table 7. Break-Even Number of Systems

E = R/KK RTCC MIS Ada Aerospace
07 4.86 4.09 2.39
1.0 3.40 2.86 1.67

The situation of decreasing productivity with increasing R (in Table 2) occurred when
the expected number of application systems, N, was less than Ny (for a particular appli-
cation type). This phenomenon can be explained by a restatement of the basic unit cost
system as:

Cus = CvN + [- (Cyn - Cvr) + Cpe/ENJR
As R increases, Cyg will increase as long as:
Cpe/EN - (Cyn-Cyr) > 0
That is, the labor rate Cyg in LM/KSLOC with increasing R will increase, but productivity
in SLOC/LM will decrease as long as the above inequality is true. Solving this inequality
for N:

N < Cpg/[(Cvn - CVR)E] = No

As long as the expected number of application systems is less than the break-even number
of systems, productivity will decrease with increasing R.
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Since E = Sr/Stif SR = S, the amount of reuse is the maximum possible, andE = 1.
In this case, K = R. When K = R, the basic reuse unit cost equation becomes:

C L]
Cys = CVN—(CVN"—NDE“CVR) R

In this case, the break-even number of systems, Ny, is found by setting Cys = Cyn,
as before. Then:

CDE

N, = —P2E
" Cun-Cwr

This is exactly the equation derived above but with E = 1.

Figure 5 shows the RTCC cost model application data from Table 3 plotted as productivity
in SLOC/LM versus the number of application systems for proportions of reuse
R = 0.7 and R = 0.9. This figure illustrates the phenomenon of higher reuse produc-
ing lower productivity when the number of application systems is below the break-even
point. The MIS data from Table 3 could also be used to illustrate this phenomenon.
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|

|

Productivity (SLOC/LM)

N, = 3.40 Break-Even Systems (E = 1.0)
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T i i 1 t L
1 3 5 7 9 11 13 15
Number of Application Systems

Figure 5. Number of Application Systems Versus Productivity at Two Levels of Reuse
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Table 7 shows that when E = 1.0, the break-even number of systems for the real-time
cost model application is 3.40. Since E = R/K = 1.0, K = 0.9. Substituting these values
into the basic unit cost equation for the real-time application:

Cus = (5.305/3.40)(0.9) +2.072 - 1.558(0.9) = 2.07 LM/KSLOC

and 1,000/2.07 = 483 SLOC/LM. Therefore the 3.40 break-even systems correspond
to a productivity of 483 SLOC/LM and whenever N is greater than 3.40, reuse pays off.
Note that in the example case of Ada aerospace systems, the break-even number of
systems, also when E=1.0, is 1.67. That is, for N =2 systems, reuse pays off.

Calculating Return on Investment

As was stated previously, the cost of domain engineering activities represents an
investment in the creation of RSOs to make possible a high degree of reuse over a fami-
ly of application systems. The return on this investment is the difference in costs be-
tween the cost of N application systems in which there is no reuse and the cost of N
application systems in which there is an average reuse of R. If the cost (in LM/KSLOC)
of domain engineering is denoted as Cpg, the cost (in LM/KSLOC) of new software
is denoted as Cyp, and the cost of reused software (in LM/KSLOC) is denoted as Cyg,
then it can be shown that the percent return on investment (ROI) is:

ROI = [(N)(E)XCvyn - Cvr)/CpE - 1] 100

where N is the number of application systems and E is the efficiency factor discussed
above.

The number of systems, Ny, at which the ROI is zero may be termed the break-even
number of systems. It is determined by setting:

(No) (BE) (Cyn-Cvr)/Cpe-1) =1
Thus:

CDE
N = ———

* " (Cww-Cw)E
This is the same equation for Ng derived above from a different point of view.

Therefore the expression for ROI may be written as:

N
ROI = [——-1]100

0
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In the case of ROI, the emphasis is on determining when an investment in domain
engineering pays off. This can be the case for relative productivity calculations as well.
In addition, productivities relative to those of current industry practice may also be of
interest, especially to those who wish to understand how systematic reuse compares
with current practice.

Table 8 shows the comparison of return on investment for selected values of N. The
negative values of percent return on investment are caused by the number of systems
(N) being below the break-even number of systems.

Table 8. Percent Return on Investment (E = 1.0)

N RTCC MIS
2 -41.3 -30.2
3 -119 4.7
4 175 39.6
5 46.9 745

10 193.7 249.1

15 340.6 423.6

The equation for return on investment can be restated in terms of the following

expression:
N = ROI +1 _Coe |1
100 Cwn-Cwr/J\E

Figure 6 shows that, for both cost model applications, MIS and real-time (RT), the higher
the library efficiency, the greater the return on investment.

Suppose that a 20 percent return is the least return on investment that is acceptable,
and suppose that a 50 percent return is considered the highest return that is possible.
Let Cpg = 5.305, Cyn = 2.072, and Cygr = 0.514 as with the RTCC example discussed
earlier. Then N*E has the value 4.09 for the 20 percent return case and 5.11 for the
50 percent return case. The relationship between N and E then becomes as shown in
Figure 7, and the 20 to 50 percent operating region is the area between the lines. Note
that the cost of money was not taken into account in this calculation. A later section
of this paper discusses cost of money.
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Reuse Economics MobeL Wrtn INcreMeENTAL Domain ENGINEERING

This section generalizes the basic reuse economics model presented earlier to cover
the case in which the domain engineering is not done entirely at once, up front.
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The basic reuse economics model implies that all of the domain engineering is complete
before the first application system is produced. For certain domains and environments this
may be the case, but domain engineering does not necessarily have to be done in this fash-
ion. Dornain engineering may be done incrementally (i.e., piecewise), with some domain
engineering being done in conjunction with more than one of the N application systems
produced from the domain.

Consider the St KSLOC of unduplicated code in the reuse library that is to be used
in one or more of the N application systems to be produced from the domain. Suppose
that STq KSLOC is used in system number 1, St2 KSLOC is used with system number
2, and so on. In general St; will be used with system number i. Thus 0<Sty< St fori
= 1,..,N so that:

N
Sr= Zs'n
i=1

Thus St isamortized over N application systems, St is amortized over N - 1 systems,
and in general St; is amortized over N - (i - 1) systems.

For the ith system out of N application systems, the unit cost, Cys;, is:

_ (Co) < Stm ~(Sta
CUSi - ( SS )z (N__(m_l)) + CVN_(CVN_CVR)mZ:I( Ss )

m=1

which reduces to:

i
STm

Cusi = Cpg Z m

m=1

+ CynSs=(Cyn - Cve) . Sta

m=1

This is the basic unit cost equation with incremental domain engineering for domain
engineering occurring in more than one period of time. This equation assumes that the
efficiency, E, is equal to one. Thus:

.- 51)

m=1

which is the maximum amount of reuse possible for system i.
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If St1 = Stand if STy = Ofori = 2,3,...,N, then the basic reuse unit cost equation for
incremental domain engineering reduces to:

C S S
Cusi = (ﬂ)( ST) + Cn-(Cw - CVR)( ST)
s

which is the same form as the basic unit cost equation with K = R, for the cost of
up-front domain engineering.

For the ith system to break-even, its cost must be less than or equal to that for the case
in which the entire system of size Sg were to be made from entirely new code:

i STm i -
Coe ), oD ~(Cvn-Cvi) > St < 0

m=1 m=1

If, as before, St; = Stand St; = Ofori = 2,3,...,N the above equation reduces to:

CDE

—— < N
(Cvn-Cygy °

which is identical to the break-even number of systems calculated from the basic unit
cost equation with E = 1.
Similarly, for N systems as a whole to break-even:

CDEZZ (N- (r: 1) -(Cw- Cvn)z ZSTm =

i=1 m=1 i=1 m=1

Now:

St _ B
Zz (N (m 1)) (Nl) (N 1)((N 1)) -+ STN = ST1 + ... +STN = ST

i=1m=1

and:

N i
> D Sta= NSt + N=1Sr, + (N-2)S3 + ... + Spu

i=1 m=1
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Therefore, for the N application systems in the domain to break-even overall:

Coe  _ (NSp+ (N-1)Sp + ... + Sm)
(Cvn- CVR) Sr

and the break-even number of systems, Ny , is found by solving the above equation for
N. Let:

St = aiSr, iai =1
i=1

Then the right side of the above equation becomes:

Na; + N-Dagz +... + W-(N-1))ay = N-P

where:

Thus the break-even number of systems, Ny, is given by

CDE

N, = —PE__ 4
" Cown-Cw

P

where P is the incremental spending penalty. It is clear that doing domain engineering
incrementally has the effect of increasing the number of systems required to
break-even as compared with doing domain engineering all at once.

Carcurating RETurRN oN INVESTMENT FOR THE INCREMENTAL Domain EncINeeriNg Case

Now, four cases of incremental funding of domain engineering investment are
presented. The value of P, the additional number of application systems required for
the break-even point to occur, is calculated for each case:

Case 1: St1 = St




123

Case 2: St = STp = §21

(NSTl + (N_I)STZ) = N.._l_, or P= 05
St 2

Case 3:S11 = St2 = ST3 = ST4 =S4_T

(NSty + N -1)S, +éN‘2)ST3 + (N-3)Stq) _ 4N—(1:2+3) - N—%,orP =15
T

Case 4:
5 4 3 2 1
St = (E)ST’ S, = (E)ST’ St3 = (1—5)31', Sta = (I_S)ST’ Sts = (I—S)ST

(Nsty + N=1)Sp, + (N=2)S13 + (N-3)Sgs + (N - 4)Sys
St

= N—g, or P=133

Using these formulas, the cost per application for each of a family of five systems is
computed for each of the four cases (regimes). The parametric values used for the four
regimes are: Sg = 500 KSLOC, St = 450 KSLOC, Cyn = 5 LM/KSLOC, Cyr = 0.5
LM/KSLOC, Cpg = 7.5 LM/KSLOC, and E = 1.0. All investment and cost figures
are in LM.

In Table 9, 12,500 LM is the total cost for five application systems without reuse. The
cost of money is not included. Figures 8 through 11 illustrate the data in Table 9.



3000

2000

Labor Months

1000

Application System Number

U Domain Engineering Investment
W Cost Per System With All New Code
B Domain Engineering Cost Per System

[ Application Engineering Cost Per System

Figure 8. Case 1: Domain Engineering Invested All at Once

4000

3000
g
g 2000
=
S 1000
K

0
Application System Number

O Domain Engineering Investment
M Cost Per System With All New Code
B Domain Engineering Cost Per System
A Application Engineering Cost Per System

Figure 9. Case 2: Domain Engineering Spread Equally Over Two Increments



125

Labor Months

Application System Number

0 Domain Engineering Investment
M Cost Per System With All New Code
B Domain Engineering Cost Per System

[4 Application Engineering Cost Per System

Figure 10. Case 3: Domain Engineering Invested Equally Over Four Increments

4000
3000
£
[=}
S 2000
=
3o
Q
g 100
0

Application System Number

O Domain Engineering Investment
B Cost Per System With All New Code
# Domain Engineering Cost Per System

[4 Application Engineering Cost Per System

Figure 11. Case 4: Declining Domain Engineering Investment Over Five Increments



126

Table 9. Costs For Four Alternative Domain Engineering Investment Regimes

Case 1 Case 2 Case 3 | Case 4
Cost Per
System
Without Domain Domain Cost Domain Domain Cost
Reuse and Engineering | Cost Per | Engineering Per Engineering { Cost Per | Engineering Per
Domain Investment System Investment | System Investment System Investment | System
System | Engineering (L8.0)) (LM) @M M) am (‘M) am (M)
1 2,500 3,375 1,150 1,687.5 1,825.0 843.75 2,162.5 1,125 2,050
2 2,500 - 1,150 1,687.5 1,234.4 843.75 1,867.2 900 1,735
3 2,500 - 1,150 - 1,234.4 843.75 1,642.2 675 1,555
4 2,500 - 1,150 - 1,234.4 843.75 1,557.8 450 1,510
5 2,500 - 1,150 - 1,234.4 — 1,557.8 225 1,600
Totals(1) 12,500 3,375 5,750 3,375 6,762.6 3,375 8,787.5 3,375 8,450
Savings(2) 6750 5737.4 3718.5 3960
(= 12500 - 5750) (= 12500 - 6762.6) (= 12500 - 8787.5) (= 12500 - 8450)
Percent Return on
Investment’ = 200 170 110 120
Savings/3375

REeturn on InvestmenT INcLupiNG THE EFsecTs oF THE Cost oF MoONEY

The previous section on incremental domain engineering did not consider the cost of
money (COM), i.e., the cost of borrowing money to fund incremental domain engineer-
ing efforts. The COM is the interest paid on borrowed funds, or the imputed interest,
and is an element of cost that many business organizations should consider when
making decisions about software reuse.

The calculation of the COM involved in incremental domain engineering can be
organized as an N-by-N array in which the columns correspond to domain engineering
investment “streams,” and the rows correspond to the costs for each of these streams
for each of the application systems. A stream is an allocated flow of money for an incre-
ment of domain engineering, COM plus principal, to finance domain engineering in-
vestment for present and future (planned) application systems. For example, stream 1
begins at application system 1 and contains the full increment of domain engineering
investment for application system 1 and partial increments of domain engineering in-
vestment for the future systems. Each one of the future increments has a different val-
ue since the financing for the second system is over a shorter time than the financing

“for the last planned system. In any cell of the N-by-N array, the COM is the product
of the portion of investment borrowed for system j under investment stream i and the
cost of borrowing for y years at p percent annually.

The formula for the COM in any cell in the N-by-N array (actually only the lower
triangular form is used) is:
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L] . )@ ai.CT .
IL;=1a Cr-(j- ‘{1 +001py-1|=F,'F
1) a T (] 1) N—(l*l) [ OOP)Y ] 142
where:
F1 = Amount of domain engineering investment borrowed for a system in
investment stream i.
F, = Proportion, COM. Example 0.36 means that 36 percent of F; can
comprise COM (jj), or L.
This formula simplifies to:
. L) j - i .
IL;j=aCr | 1-———— |'[1 + 0.01py-1
1y a T N - (l _ 1) [ O P ))' ]
where:
= Annual percent interest rate.
y = Number of years to which each investment increment is applicable.
Cr = Total domain engineering investment.
aj = Proportion of Ct = Cpg®St applied in stream i (a; is defined in
the section on incremental domain engineering).
T; = Total COM for application system j, where:

N
T;= > I andi < j

i=1

Two of the four cases, cases 1 and 4, discussed in the previous section are now used as
examples of the calculation of the cost of money.

Assume a family of five application systems from the domain in question and that a
system can be produced from a domain in four years. Also assume that the current in-
terest rate is eight percent per annum. As previously, all calculations are in LM, and
the same parametric values as in the section on incremental domain engineering are
used: Sg = 500 KSLOC, St = 450 KSLOC, Cpg = 7.5 LM/KSLOC, Cyn = 5.0LM/
KSLOC, and Cyr = 0.5 LM/KSLOC.
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Case 1 uses the data in Table 9 to show that 1. 3,375 LM is borrowed for four years at
eight percent to finance the up-front domain engineering effort as applied to applica-
tion system 1. Since 675 LM (= 1/5 x 3,375) would be amortized by application system
1, then 2,700 LM (= 3,375 - 675) would be amortized by system 2 and would be bor-
rowed for 4 years (the period of time required for the development of system 2). Simi-
larly, 2025 LM would be borrowed for the next 4 years, and so on. Note that these are
the entries in Table 10, which applies to case 1 for stream 1 only. This is because there
is only one increment of domain engineering in this case, all up front. Thus, in this case,
St1 = Standa; = 1;a; = 0andi = 2,3, 4, 5.

Table 10. Cost of Money for Case 1

Domain Engineering Investment Stream
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5

Appl. Total

Sys. COM | Principal | COM | Principal | COM | Principal | COM | Principal | COM | Principal CcoM
1 1216.65 675 1216.65
2 973.32 675 973.32
3 729.99 675 729.99
4 486.66 675 486.66
5 243.33 675 243.33
Total 3,375 3,649.95

In case 4, there are five increments of domain engineering as shown in Table 11 and

below:
S11 1,125 = 0.333x 3,375, a; = 0.333
St = 900 = 0.267x3,375; a3 = 0.267
St3 = 675 = 0.200x3,375 a3 = 0.200
St4 450 = 0.133x3,375;, a4 = 0.133
Sps = 225 = 0.067x 3,375, a5 = 0.067
Table 11. Cost of Money for Case 4
Domain Engineering Investment Stream
Stream 1 Stream 2 Stream 3 Stream 4 Stream 5
Appl. Total
Sys. | COM | Principal | COM | Principal | COM | Principal | COM | Principal | COM | Principal | COM
1 405.55 225 405.55
2 324.44 225 32444 | 225 648.88
3 243.33 225 24333 | 225 24333 | 225 729.99
4 162.22 225 162,22 1225 162.22...225 16222 | 225 648.88
5 81.11 225 8111 | 225 8111 | 225 8111 | 225 8111 225 405.55
Total 1,125 900 675 450 225 2,828.85
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Table 12 summarizes the COM calculations. The costs have been rounded to the
nearest LM.

Table 12. Summary of Cost of Money Cases

Case 1 Case 4
Domain Domain
Engineering Engineering
Cost Per and and
System Domain Application Cost of Domain Application Cost of
Without Engineering | Engineering Money Engineering | Engineering Money
Reuse and Investrment Cost Per (Interest) Total Investment Cost Per (Interest) Total
System DE (LM) Systera (LM) (M) M) (LM) System (LM) (LM) (LM)
1 2,500 3,375 1,150 1,217 2,367 1,125 2,050 406 2,456
2 2,500 - 1,150 973 2,123 900 1,735 649 2,384
3 2,500 - 1,150 730 1,880 675 1,555 730 2,285
4 2,500 - 1,150 487 1,637 450 1,510 649 2,159
5 2,500 - 1,150 243 1,393 225 1,600 406 2,006
Totals 12,50 3,375 5,750 3,650 9,400 3,375 8,450 2,480 11,29
0 A 0
Savings 3,100 (= 12,500 - 9,400) 1,210 (= 12,500 - 11,290)
Percent Return on
Investment = Sav- 92 36
ings/3,375

Figures 12 and 13 illustrate the data in Thable 12.

The least costly course of action is to borrow the entire cost of domain engineering at
the beginning of the domain building effort (case 1), just as with the previous analysis
of incremental domain engineering. The symmetry in the cost of money per system for
case 4, with the high amount being for system 3, suggests that a concept similar to the
economic lot size of manufacturing may apply.

MODELING REUSE OF REQUIREMENTS AND DESIGN IN ADDITION TO
CODE

This section explicitly considers the reuse (or multiple use, as defined earlier) of RSOs
other than code. The basic reuse economics model and its variant, which covers incre-
mental domain engineering, deal with code reuse. Recall that the factor R stands for
the proportion of code reuse in an application system of size Ss. Reusing a unit of code
includes reusing the corresponding software objects from it was derived, the require-
ments and design. This section addresses cases in which there is reuse of requirements
and/or designs but not necessarily of code.



130

Labor Months
8
s

=]
s

3000

SN
v,

\e,
%

0 d
4yrs-1 -4yrs-2 -4yrs-3  -4yrs- 4  Adyrs- 5
Application System Number

O Domain Engineering Investment
Domain Engineering Cost Per System
7| Application Engineering Cost Per System

Cost of Money Per System

Figure 12. Cost of Money—Domain Engineering is Invested All at Once (Case 1)

4000

3000

[ ]
[=}
(=]
(=]

Labor Months
S
=

0
-4yrs-1 -4yrs- 2 -4yrs- 3 -4yrs- 4 4dyrs- 5
Application System Number

J Domain Engineering Investment

Domain Engineering Cost Per System
[A Application Engineering Cost Per System

N Costof Money Per System

Figure 13. Cost of Money—Declining Domain Engineering Investment Over
Five Increments (Case 4)



131

Dermvation oF Cost ReLaTiONSHIPS

New code can be created from new requirements and new design, from reused
requirements and new design, or from reused requirements and reused design. Howev-
er, reused code cannot be derived from either new requirements or new design. This
statement of simple logic underlies the development of the mathematical relations
provided in this section.

The amount of reuse at later phases of development is upper-bounded by the amount
of reuse at earlier phases. For example, the amount of design reuse cannot exceed the
amount of requirements reuse (when both quantities are expressed in terms of equiva-
lent SLOC or in terms of their respective proportions of total SLOC in the application
software system). Now, if Sgg is the source statement equivalent of reused require-
ments, Srp is the source statement equivalent of reused design, and Sg is the source
statement count of reused code, then:

SNR+SRR=SS
SND+SRD=SS
SN+SR=SS

Since reused code cannot be derived from either new requirements or new design, the
following relationships hold:

Srr = Srp = Sk
Sn = Sap 2 Sar
Rrr 2 Rgp 2 R

where Rrr = Srgr/Ss (the proportion of requirements reuse), RRp = Srp/Ss (the
proportion of design reuse), and R = Sgr/Sg (the proportion of code [and of testing]
reuse).

" Figure 14 graphically shows the relationships among new and reused objects in terms
of size.

Let the unit costs (in LM/KSLOC, where the KSLOC represents the equivalent source
statements for the reused objects) for the new and reused objects be named as shown
in Table 13.
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Figure 14. New and Reused Objects at Different Levels

Table 13. Unit Costs of New and Reused Objects

Unit Costs Unit Costs
Phase/Activity New Objects (N) Reused Objects (R)
Requirements (R) Cvnr Cvrr
Design (D) Cvnp Cvrp
Implementation Cvni Cvri
(Code) (M)
Testing (T) Cynr Cvrr

ArpLicatioN oF Cost RELATIONSHIPS

This section demonstrates the application of the cost relationships just developed.

Suppose that the unit cost of new code, Cyn;, is 3.5 LM/KSLOC (286 SLOC/LM) and
that there is equal reuse of requirements, design, code, and testing. Let the breakdown
of development effort be 20 percent for requirements, 30 percent for design, 20 percent
for implementation (coding), and 30 percent for testing, so that the unit cost equation
for new code in this case is expressed numerically as:

Cvn = Cynr + Cunp + Gyt + Cunr
this value of Cyy is called Cyny. It is the base value of Cyn.
3.5 =0.7 + 1.05 + 0.7 + 1.05 LM/KSLOC.

Now suppose there is unequal reuse of requirements, design, and code. Suppose that
R = 0.5, Rpr = 0.7, and Rpp = 0.7. Then:

Cvir = (1= Reg)Owr = (0.3)(0.7) = 0.210
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Cvrp = (1-Rgp)Cynp = (0.3)(1.05) = 0.315
Using the equation for Cyy developed above:

1-0.7 0.7-0.5 1-0.7 0.7-0.5
Cww =175+ 1°05T:(I§+ 0.315 1-05 + 0.71_0.5 + 0.210 1-05

Cyn = 175 + 0.03 + 0.126 + 0.42 + 0.084 = 3.01 LM/KSLOC

which is equivalent to 322 SLOC/LM. Thus by reusing some requirements and design,
the new code productivity has been increased from 286 to 322 SLOC/LM.

Overall, the total cost of application engineering is (as described in the section entitled
Reuse Economics Model With Up-Front Domain Engineering):

Ca = Cn + Cr = CynSN + CvrSR

New code can be derived from reused requirements or reused design, but reused code
cannot be derived from new requirements or new design. Therefore the total cost of
reused code is:

Cr = CyrSR = (Cvrr + CvrD + Cvri + CvrT)SR

where Cyp is the unit cost of reusing requirements. The total cost of new code is (see
Figure 14):

Cn = CynSN = CyNRSNR + CvRR(SRR ~- SR) + CvNDSND + CVRD(SRD -
Sr)+(Cvni+ CynT)SN

Recognize that the following relationships hold (from the previous equations):
SN = (1-R)Ss; Snp = (1 - Rrp)Ss; SrD - Sk = (Rrp - R)Ss;
SRR - Sr = (RRR - R)Ss; SNr = (1 -Rgr)Ss
Substituting into the previous equation for Cy and dividing through by (1- R) obtains:

_ 1-Reo Rro-R 1-Rgr Rex-R
CVN_(CVN1+CWT)+CVND'~1_R +CVRD_1_R +CVNR—1_]_ + Cvrr I-R

This is the general cost relation equation for new code under the condition of different
proportions of various reused objects. Note that if RRr = Rrp = R, that is, if all of
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the new code is derived from (corresponds to) new requirements and design, then
Cvn = Cyni + Cynt + Cynp + CynR, as would be expected. That is, the general
cost relation for new code reduces that for new code when all of the new code is derived
from new requirements and new design.

GeneraLizaTioN oF Lisrary Erriciency MEetric

This section generalizes the concept of library efficiency to cover the case in which
objects other than code are reused but the code may not be. The proportion of code
reuse can be less than the proportion of requirements and/or design reuse. Rrg is the
effective (overall) reuse proportion. It is a weighted sum of the reuse proportions of
requirements (Rgrr), design (Rrp), and code (R). Therefore, the effective (overall)
reuse proportion can be defined as:

RB - RRR- CVRR + RRD. CVRD + R. (CVRI + CVRT)

Cwr Cvr Cwr

Let Cyri + Cvrr = CvriT- Then, Cyrr + Cyvrp + CvriT = Cvr. Therefore:

CVRR+CVRD+CVRIT=1

Cvr Cwr Cwr
Thus, the equation for RRg can be written as:

Rg = RRR'E"—“; + Rm‘cﬂ + R Cyaur
Cvr Cvr

When RRr = Rrp = R, the case of full (code) reuse (including the reuse of
requirements and design), then Rg = R, as it should. Rg is a generalization of the
proportion of reuse, R, and is used in the generalization of the basic unit cost equation
as shown in the following subsections. Then Sgg = Rge Ss. If RRr = Rrp = R, then
Rg = R and Sgg = Sgr.

Now let K = St/Sg be as originally defined, the relative library capacity. Therefore
library efficiency in the case of reuse of objects other than code is:
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This definition of library efficiency represents a generalization of the original definition
that takes into account the reuse of objects when code is not necessarily reused. If
Rrr = Rrp = R, then Rg = R, and E = Sg/Sr, as originally defined.

GENERALIZATION oF N

The factor N was defined earlier as the number of application systems in the family.
It was used as the number of systems over which an up-front investment in domain en-
gineering is amortized. It presumed code reuse and reuse of the corresponding require-
ments and design. This section generalizes N to NEg, the number of equivalent
application systems for amortization purposes when the amount of code reused may be
less than the amount of design or requirements (as considered in the previous section).

The unit cost of domain engineering is:

Coe = Cper + Coep + Corrr

where Cpgr is the unit cost for creating reusable requirements, Cpgp is the unit cost for
creating reusable design, and Cpgyr is the unit cost for creating reusing implementation
(code) and test. The prorated unit cost is:

Cpe"Ng = Cpgr*Nr + Cpgp* Np + Cpgir ' N

And therefore:

Coer Coep Cogrr
Ng = *Ng + *Np + ——*N
B Coe R Coe P Coe

where Ng is the number of equivalent (to full) application systems considering the
reuse of requirements and design objects as well as code objects, N is the number of
application systems over which the reused requirements are prorated, Np is the num-
ber of systems over which the unit cost of the reused design is amortized, and N is the
number of systems over which the unit cost of implementation and testing is amortized:

1=N<Np=<Np

If Np = Np = N, then, Ng = N, as it should. The generalization of N and R leads
to a generalization of the basic unit cost equation as shown in the next subsection.

GEeneraLizatioN of Basic Unit Cost Equation

The basic unit cost equation with up-front domain engineering is generalized to take
into account the reusable requirements and/or design without necessarily having
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corresponding code reuse. The approach is to substitute the factors Rg and Ng for R
and N, respectively, and Cyy is defined in its generalized form. Then:

C L ]
Cus = % K + Cyn - (Cyn-Cvr)Rg
E

where Cvyy is defined in its generalized form:

Rrr-R

1-R Rrp-R 1-R
CVN=(CVNI+CVNT)+CVND—RD+CVRD ED R 1-R

1-R 1-r T OmTR

+ Cyvrr

FINAL VIEW

Substantial savings can be realized in the development costs of application software
systems when using a systematic reuse process as compared to either all new code de-
velopment or casual reuse because of the higher development productivity that system-
atic reuse provides. The very nature of the systematic reuse process requires software
developers to consider not only the current version of the system being composed but
future versions as well. This should have a large impact on the supportability of the
system with its attendant cost consequences.

Incremental funding of the domain engineering investment generally results in lower
returns on investment than up-front funding but has the advantage of conserving capi-
tal until required. It recognizes that it may not be possible to fully describe a domain
before any of the systems in the domain family have been constructed.

The reuse economics model not only demonstrates the economic impact of systematic
reuse but also serves as a means to learn about applying a systematic reuse process.
With such a model, the user can explore the costs and benefits of an investment in a
domain. Such what-if explorations can help support business decisions.
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EXECUTIVE SUMMARY

An incremental development and test process is being successfully used in the
implementation of the Command Center Processing and Display System Replacement
(CCPDS-R) Program. This program is a large U.S. Air Force Ada application
comprised of several subsystems each with rriultiple increments of capability. The first
subsystem delivery was made to the Air Force in December 1990 and consisted of over
280,000 Ada Source Lines of Code, operator display consoles, and data processing

equipment.

Experience to date indicates that both the Government procuring agency
(Electronic Systems Division with support from the MITRE Corporation) and the
developing contractor (TRW Systems Integration Group) have had better-than-average
visibility into true software development progress. This visibility is attributable to
several factors discussed in this paper including prototyping, the use of design
walkthroughs, formal demonstrations of functionality, early development of the
architectural and system service software base, delivery of operational capability via
series of tested software Builds, and the monthly application of software management

metrics.
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The software that has been demonstrated and delivered to date has been
exceptionally reliable. Numerous failure-free demonstrations have been given to
interested parties for over a year and the delivered software, although not completely
tested, is being regularly used without incident by the Government for training and
performance measurement purposes. Factors behind this built-in quality are addressed;
namely, development of software tools to reduce error-prone coding, use of a message-
based design to standardize task-to-task communications, early checkout of interfaces,
and continuity of software staff,

Lastly, reasons why the program is achieving and maintaining software
productivity significantly higher than industry averages are discussed. These include
reuse of design and code from subsystem to subsystem; choice of a hardware
architecture with virtually unlimited growth potential; and standardization of procedures
for writing applications software and handling task-to-task interfaces, in addition to early
integration and staff continuity.

General "lessons learned” and recommendations for the technical management of

incremental Ada development projects are also provided.

BACKGROUND

The U.S. Air Force is currently pursuing several development efforts to upgrade
the tactical warning and attack assessment capabilities of the United States. The
elements comprising these capabilities are commonly referred to as the Integrated
Tactical Warning and Attack Assessment (ITW/AA) System.

A major component of the ITW/AA System is the Command Center Processing
and Display System Replacement (CCPDS-R) Program. This component is
responsible for processing data from ground and space-based radars to determine whether
launches of ballistic missiles constitute a threat to U.S. interests.
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CCPDS-R consists of three subsystems (see Figure 1):

a. A ballistic missile warning subsystem which makes the actual assessment of

threat,

b. A missile warning display subsystem with terminals deployed worldwide, and

c. A management/survival subsystem to protect the U.S. bomber force.

CHEYENNE MT. AFB

MISSILE WARNING
SENSOR DATA BALLISTIC MISSILE DISPLAY
WARNINE RSIUE)SYSTEM SUBSYSTEM NMCC/ANMCC
M
{ MISSILE WARNING
DISPLAY
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OFFUTT AFB 4
NUCLEAR-CAPABLE CINCs
MISSILE WARNING
SENSOR DATA BALLISTIC MISSILE MISSILE WARNING DISPLAY
™| WARNING SUBSYSTEM DISPLAY SUBSYSTEM
(ALTERNATE) SUBSYSTEM
HQ. SAC
BOMBER ALERTS BOMBER FORCE MISSILE WARNING
<l = = | MANAGEMENT/SURVIVAL }— DISPLAY
SUBSYSTEM SUBSYSTEM

Figure 1. CCPDS-R System Overview

SYSTEM OVERVIEW

The CCPDS-R is a large Ada software application, on the order of one million
source lines of code (1M SLOC), implemented on Digital Equipment Corporation VAX
computers. One of the three CCPDS-R subsystems, i.e., the Missile Warning
Subsystem, consists of 340,000 SLOC installed on a VAX 6520 Mission Processor.
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This processor contains the communications processing, missile warning algorithms,
and databases necessary to drive operational displays located at Cheyenne Mt., CO;
Offutt AFB, NE; and selected remote locations throughout the world.

The CCPDS-R hardware/software architecture employs a layered design in which
hardware dependencies are confined to a small subset of the operational code. For
example for the Missile Warning Subsystem, the mission processing hardware
dependencies are contained in about 10,000 source lines of code (10 K SLOC) out of a
total developed software size of 340 K SLOC. In addition, the more difficult Ada
language constructs are isolated away from the application software thereby reducing
both the number and severity of coding errors in the applications, and enhancing overall

software developer productivity.
MEASUREMENT OF DEVELOPMENT PROGRESS

Visibility is a key to determining the real status of software development efforts.
Visibility becomes even more important when the software being developed is large,
complex, and time-critical, as is the case for CCPDS-R.

The Government procuring agency (Electronic Systems Division with support
from the MITRE Corporation) and the developing contractor (TRW Systems Integration
Group) have instituted several innovative techniques for determining software
development progress on CCPDS-R. These include:

a. Incorporation of working prototype code into the operational software,

b. Design walkthroughs,

c. Early development of architectural software,
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d. Incremental delivery of operational capabilities via software "builds”

e. Formal demonstrations of delivered capabilities, and

f. Monthly assessment of progress via software management metrics.

The CCPDS-R Program employs a prototyping and build approach (see Figure
2) which, in essence, breaks the overall subsystem development cycle into a series of
smaller, more-easily manageable, developments. This approach is characterized by three

milestones:

a. A preliminary design walkthrough (PDW) for each build at which the top-
level software design is reviewed along with the ability of prototype code and Ada
Design Language (ADL) to compile, link, and execute.

b. A critical design walkthrough (CDW) to review the detailed design of each
build and its proper operation.

c. A formal demonstration of each build which focuses on operational

capability and is subject to pass/fail criteria.

Both the Government and the contractor are active participants in these three activities.

Under the prototyping and build approach, CCPDS-R software development
began significantly earlier than would have been the case under a more traditional
software development. By the time of Critical Design Review (CDR) of the software
for the Missile Warning Subsystem, about 3/4 of the code had been designed coded,
integrated, and informally tested. The earliest software developed consisted of the
architectural and system service software base upon which all subsequent applications
software would depend. Thus, integration, which is the most risky part of software

development, has been an early and continuing effort on the CCPDS-R Program.
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Figure 2. CCPDS-R Prototyping and Build Approach

Traditionally, integration does not begin until after CDR. As a result, integration
problems tend to surface late in the development when their effects are magnified by the

pressures of schedule and the contention for resources.

The CCPDS-R Program has capitalized on the numerous opportunities available
to measure progress. To date, these have included about 10 formal reviews, 6 PDWs, 6
CDWs, and 7 demonstrations. In addition, the Government and TRW management
receive monthly quantitative reports of progress, commonly called software management
metrics. Actual vs. planned progress is tracked with regards to software staffing,
software size, development progress, and test progress. Separate accounting is
maintained for the % of the software which has been designed, coded, unit tested,
documented, integrated, component tested, and string tested. Similar tracks are kept for
test procedures completed and requirements verified. Cumulative plots of open and

closed software problem reports and software documentation problem reports are
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generated monthly. The status of all action items resulting from formal meetings is

also updated monthly along with plots of cost and schedule variances.

SOFTWARE RELIABILITY

One measure of the built-in quality of software is its reliability, i.e., mean-time
between critical failures. The CCPDS-R software, even though still in the midst of

development, is experiencing a reliability in excess of 10,000 hours.

This reliability is attributable to the use tools to generate code that would
otherwise be labor-intensive, repetitive, and hence prone to human error; the use of a
message-based design which relieves the applications developers from the burden of
creating software for task-to-task communications; early integration of the
architectural/system service software and applications shells which allows for the early
discovery and correction of errors; and continuity of knowledgeable staff, primarily

within the contractor organization but also on the Government acquisition team.

For example, the Missile Warning Subsystem uses a variety of tools to generate
compilable Ada code from pseudo-English data inputs. The principal tools consist of
about 22 K SLOC which are used to generate about 233 K SLOC of operational code - -
an expansion factor in excess of 10 to 1. Verifying the proper operation of the tool
code is easier, less time-consuming and less error-prone than manual verification of the
tool-generated code. On the CCPDS-R Program, approximately 38% of the code is
being generated by means of tools.

A second factor underlying CCPDS-R software reliability is the message-based
design which incorporates a software architecture skeleton consisting of reusable node
managers, process executives, and task executives. These permit applications

developers to concentrate on the functionality associated with their respective modules
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without having to know the inner workings of the software infrastructure and the

mechanisms by which Ada tasks communicate with other Ada tasks.

The third and fourth factors behind CCPDS-R's software reliability are the early
integration of software components with resultant early identification of interface
incompatibilities, and staff continuity which provides the knowledge base from which
problems can be addressed. The early development of the architectural/system service
software has insured its repeated use by the applications programmers and hence
contributed to its inherent reliability.

PRODUCTIVITY

The CCPDS-R Program is experiencing software productivity in the range of 4.1
to 10.6 Ada SLOC per staff-day. This range is a function of how the code is counted
and is complicated by differences in the amount of effort required to produce new code,
modify previously-developed code, reuse old code, and generate new code using
automated tools. The computation is further obfuscated by the lack of an industry
standard for counting Ada source lines of code. The approach taken on the CCPDS-R
Program to compute productivity follows (see Figure 3):

a. Weight new code and modified code equally,

b. Weight reused and tool-generated code at 3/10 and 6/10 of the effort required
to generate new code, respectively,

c. Compute SLOC by adding carriage returns in Ada Specifications and semi-
colons in Ada Bodies; do not count "Comment" lines.
Applying this approach to the CCPDS-R code yields a weighted software productivity
of 7.3 Ada SLOC per staff-day which is about 40% higher than the upper end of the
usually quoted industry range of 3 to 5 Ada SLOC per staff-day.



147

10.6
12 Z
ADA NEWMODIFIED 385K
9
sLoc REUSED 220K
PER TOOL-GENERATED 355K
STAFF-DAY €1 TOTAL 940K

3

[+]

TOTAL CODE EQUIVALENT NEW CODE ONLY

TOTAL CODE = NEW/MODIFIED + REUSED + TOOL-GENERATED

EQUIVALENT = NEW/MODIFIED + .3 * REUSED + .6 * TOOL-GENERATED
NEW CODE ONLY = NEW/MODIFIED

SLOC = SPECIFICATION CARRIAGE RETURNS + BODY SEMI-COLONS
(NO COMMENTS)

Figure 3. CCPDS-R Software Productivity

The major factors contributing to this relatively higher productivity are the reuse
of design, code, and people; and the use of tools to generate code, previously discussed.
In fact, on the CCPDS-R Program 23% of the code is being reused from one subsystem
to the next out of the nearly 1M SLOC being developed. People reuse has taken the
form of a stable, highly knowledgeable, software architect team augmented by bright
applications developers organized into manageable entities. The team of software
architects has been responsible for the more difficult software code, i.e., the
architectural/system service software. This code effectively isolates the applications
developers from the complex Ada constructs of tasking, rendezvous, time-slicing,
prioritization, etc. The net result is code appropriate to the technical abilities of the

individuals and hence reduced errors.

A second but less obvious contributor to productivity is the availability of a
processor family that is compatible with the developed software. On several occasions
during the development of the CCPDS-R System, as performance margins were reached,

the Government and contractor team was faced with the decision on how to best fit the
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remaining software while still satisfying performance constraints, such as maximum
allowed processor utilization. The choices were two-fold: tune the software to make it
more efficient or upgrade the processors. Tuning the software is labor-intensive and
tends to reduce productivity. Nevertheless, on a few occasions the software was tuned to
speed response times and increase throughput. On most occasions, however, the
processors were upgraded because the software could be ported with virtually no changes
and hence no expense of labor. Also, the upgraded processors could be purchased at
about the same cost as the originally planned processors. Hence, the upgrades could be
made with no corresponding increases in overall CCPDS-R Program costs.

A third factor in CCPDS-R productivity has been the use by the developers of
standard development procedures. These have included standard ways for developers to
interface their applications modules with the reusable architectural software components,
and standard ways for writing applications code using templates at both the application
"process” and "task" levels. Stated another way, all of the applications developers are
developing code in the same ways. This has resulted not only in fewer errors (3.5 per
K SLOC vs. 5 - 12 per K SLOC industry experience) but also in high maintainability.
The result is less labor to fix problems and hence higher productivity. On the CCPDS-

R Program, about 2/3 of the software errors have required less than one day to fix.

The fourth and fifth factors behind CCPDS-R’s productivity figures were also
discussed previously as factors behind the reliability of the software. They are early
integration and staff continuity. In addition to improving the quality of the software,
these factors contribute to the overall efficiency of the software development process and

are therefore positive influences on productivity.

LESSONS LEARNED

When comparing the CCPDS-R Program to other programs which have had

successful software developments (such as the Berlin Radar Program), certain
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similarities stand out. These include the quality of the documentation and test program,
the close professional team relationship between the contractor and Government teams,
knowledge by both of the job to be done and how to go about doing it, and continuity
of key personnel. These are the characteristics of a good and well-run program.
However, on the CCPDS-R Program three additional factors contribute to make it an
exceptional program:

a. The existence of a Concept Definition Phase during which many of the up-

front system engineering trade studies were conducted.

b. The use of a flexible architecture characterized by reusable architectural
components, standard task-to-task communications, and standard applications process
and task templates.

c. The use of a Software Development Process model consisting of operational

code prototypes, design walkthroughs, builds, and formal demonstrations.

In conclusion, the CCPDS-R software development approach is working.
Performance, schedule, and cost objectives are being met. The success enjoyed to date
has been due to a combination of the capabilities provided by Ada technology and the
application of previous lessons learned. This software development approach has
resulted in an environment characterized by a high degree of visibility into true software
development progress, high software reliability, and high software productivity. As
such the CCPDS-R Program is a model for others to follow.
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1 Introduction

Managing a large scale software development requires the use of quantitative mod-
els to provide insight and support control based upon historical data from simi-
lar projects. Basili introduces a paradigm of measurement based, improvement-
oriented software development, called the Improvement Paradigm [1]. This paradigm
provides an experimental view of the software activities with a focus on learning
and improvement. This implies the need for quantitative approaches for the fol-
lowing uses:

o to build models of the software process, product, and other forms of experi-
ence (e.g., effort, schedule, and reliability) for the purpose of prediction.

e to recognize and quantify the influential factors (e.g. personnel capability,
storage constraints) on various issues of interest (e.g. productivity and qual-
ity) for the purpose of understanding and monitoring the development.

o to evaluate software products and processes from different perspectives (e.g.
productivity, fault rate) by comparing them with projects with similar char-
acteristics.

o to understand what we can and cannot predict and control so we can monitor
it more carefully.

Classical techniques for data analysis have limitations when used on software
engineering data. In this paper we present a new data analysis technique, based
on pattern recognition principles, designed to overcome some of these limitations.

The paper is organized as follows. In Section 2 of this paper, we discuss the
needs and the constraints in building effective models for the software development

*This work was supported in part by NASA grant NSG 5123 and by AFOSR 90-0031
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processes. We present a new approach for analyzing software engineering data in
Section 3, called Optimized Set Reduction (OSR), that overcomes many of the
problems associated with traditional techniques. In Section 4, experimental results
are provided to demonstrate the effectiveness of the approach for the particular
application of cost estimation modeling. Section 5 identifies major conclusions.

2 Requirements for an Effective Data Analysis
Procedure

Based upon constraints associated with the data and the analysis procedures, we
generate a set of requirements for model building approaches. In the text that
follows, we will refer the variable to be assessed as the “Dependent Variable”
(DV) (e.g. productivity, fault rate) and the variables explaining the phenomenon
as “Independent Variables” (IVs) (e.g. personnel skills, product complexity).

2.1 Constraints Related to Software Engineering Data

Empirical model building in Software Engineering is faced with the following dif-
ficulties:

e Cj: There is no theory proven to be effective in any environment that would
give a formal relationship among measured metrics in the development pro-

cess. Therefore the capabilities of classical statistical approaches seem very
limited.

e Cy: There is little evidence to support assumptions about the probability
density distributions, with respect to the dependent and independent vari-
ables of interest.

e C3: The sample size is usually small relative to the requirements of the
classical statistical techniques, the quality of the data collected, and the
number of significant independent variables. This is due to the nature of
the studied objects in software engineering (e.g. software system, module,
change, defect ...).

o C4: “Software engineering modelers” have to deal with missing, interde-
pendent and non-relevant independent variables: This is due to a lack of
understanding of the software development process.

e Cs: Data defined on both continuous (i.e. ratio, interval) and discrete (i.e.
nominal, ordinal) ranges have to be handled. Collecting data in a production
environment is a difficult task and discrete data collection is often performed
to facilitate the measurement process. Also, the nature of some of the data
may be discrete.
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2.2 Requirements to Alleviate These Constraints

Matching the constraints, we can define requirements for effective data analysis
procedures:

e R; [matches Cy,C,]: The data analysis procedure should avoid assumptions
about the relationships between the variables regarding the probability den-
sity distribution on the IV and DV ranges.

e R; [C3,C4]: A mechanism is needed to evaluate accuracy for each performed
estimation. The variations of accuracy lie in a large range depending on the
object to be assessed. For example, you may want to assess a software project
from the point of view of productivity.

Cs The amount of available relevant data may differ according to the char-
acteristics of the project to be assessed. For example, you may have
more data with respect to data processing business applications than
with respect to real time systems. In small samples, this phenomenon
can have significant consequences.

Cy4 The performed data collection may be more suitable to certain kinds
of objects than others. For example, objectively measuring time con-
straints for real time systems may be difficult and therefore may intro-
duce more uncertainty in the assessment.

e Rj3 [C4): The data analysis procedure must be as robust as possible to miss-
ing, non-relevant, interdependent IVs and outliers. Then, some procedures
should be available in order to detect and alleviate the effects related to these
kinds of disturbances in the data set.

e R4 [Cs): The data analysis procedure must be able to easily handle both
discrete and continuous metrics without biasing the obtained results.

3 A Pattern Recognition Approach for Analyz-
ing Data

Due to the difficulties associated with software engineering data, new techniques
have been investigated to support modeling activities. For example, Selby and
Porter have advocated the use of automatically generated tree-structured classifiers
as a mechanism for identifying high-risk portions of the software product [8]. A
comparison of the strengths and weakness of this and regression based techniques
can be found in [3]. Our goal is to develop a data analysis procedure based upon
pattern recognition principles that is intended to fulfill, to a certain extent, the
previously described requirements for effective data analysis. This procedure and
itsmain'supporting principlesrarerdescribed in the following sections.
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3.1 Description of the Technique

The goal of the technique is the recognition of patterns in a data set. These
patterns are used as a basis for understanding and assessing the development
process, product and environment.

3.1.1 The Basic Concepts and Terminology

e A learning sample consists of m vectors containing one dependent and n
independent variables: (DV;,IV;;,...,IV;,),i € (1,...,m) . These vectors
are defined in an Euclidian space called the “sample space”. These vectors,
which we will call pattern vectors, represent measurements taken in the
environment.

¢ A measurement vector is defined as the set of independent variable values
representing a particular object whose dependent variable value is to be
predicted. That is, it is a pattern vector without the dependent variable.

e To be able to make predictions on the dependent variable, its range has to
be sub-divided or grouped into what we will call DV classes. These classes
correspond to natural situations that can be encountered in the measure-
ment environment, with respect to the dependent variable. If the dependent
variable is either “ratio,” “interval,” or “ordinal,” the dependent variable
range is sub-divided into intervals; if the dependent variable is “nominal,”
categories may be grouped into a smaller set of classes. They are called
“states of nature” in decision theory and “pattern classes” in the pattern
recognition field [9]. We have chosen the name DV classes in order to make
the connection with a classical statistical approach for multivariate analysis.

e To be able to use the independent variables as a basis for predicting the
dependent variable, they, like the dependent variables, must be mapped into
IV classes by sub-dividing or grouping.

e A pattern is defined as a non-uniform distribution of probabilities across
the DV classes. The further a distribution is from uniformity, the more the
pattern is considered to be significant.

3.1.2 A Pattern Recognition Process

The problem of predicting the dependent variable for a particular project can be
stated as follows: Given a particular measurement vector (MV), determine the
probability that the actual dependent variable value lies in each of the DV classes.
The shape of the probability density function on the DV class range associated
with MV is unknown. The goal and the basic principle of this process is to find a
subset of pattern vectors in the data set, whose values for the independent variable
are similar to the values for the independent variables of MV, and that show a
significant pattern among the DV classes.
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Measurement Vector = {IV1 = C1.a, IV2 = C2.b, IV3 = C3.¢}
IV1=Ct.a IV2=C2b
IDEAL
SUBSET IV3= C3.c

Figure 1: Ideal Approach

Taking this approach in the ideal, given a learning sample and a measure-
ment vector, MV, we could select an ideal subset of all the pattern vectors in the
learning sample having exactly the same IV instances as MV (see figure 1). How-
ever, since we are usually working with small samples and numerous independent
variables, the ideal subset is typically too small to be useful, so this ideal approach
is not applicable.

Alternatively, we need to find a subset of the learning sample that contains
pattern vectors similar to MV with respect to some IVs, and that yields a sig-
nificant pattern on the DV range. This subset must be large enough and contain
sufficiently homogeneous pattern vectors to yield significant patterns. To extract
the subset from the learning sample, we need to select a collection of IVs that
will be used to determine the pattern vectors in the subset. The pattern vectors
matching the MV instances with respect to the selected IVs will be extracted from
learning sample.

Such a process is illustrated in figure 2. Some selection function SF
chooses a IVs in a stepwise manner that will be used to subset the data set DS. We
see that DS has a fairly uniform distribution on the DV range. SS1, a subset of DS
with IV1=Cl.a, shows an improvement, in that a pattern appears to be emerging.
Finally, SS2, formed from SS1 with the condition that IV2=C2.b, appears to have
a very clear pattern, that is, objects in this subset have the DV defined on a very
narrow range. The IV selection is done so that the resulting subset has a clear
pattern on the DV range, and that MV is very similar to the objects in the final
subset in terms of the selected IVs (i.e. IV1=Cl.a and IV2=C2.b). In other words,
each subset resulting from a potential IV selection will be evaluated using SF to
provide information on the degree of significance of the pattern in the extracted
subset. The IV that yields the most significant pattern will be selected.
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Figure 2: The Pattern Recognition Process

Two reasons justify a stepwise process:

e The number of possible IV combinations makes an exhaustive search pro-
hibitive.
o We need to ensure a statistically significant pattern in the resulting subset,

i.e. we want to ensure that all contributing I'Vs have a significant impact on
the pattern.

A set of experiments have led us to develop the following pattern recognition
process (called Optimized Set Reduction) applied for any measurement vector MV:

e Step 1: DV classes are formed either by dividing the DV range into intervals
or by grouping the defined DV categories. For optimal results, a similar
number of pattern vectors should be in each class. The mechanism for cre-
ating classes is described in more detail below. IV classes are formed in a
similar way.

o Step 2: The learning sample is successively decomposed into subsets. At
each step, an IV is selected (according to a selection function described
below) and the objects having the same instance for the IV as the object to
be assessed (MV) are extracted to form the reduced subset. This is done
recursively on the reduced subsets.

e Step 3: When a predefined condition is reached, the reduction stops. This
condition will be referred to as the termination criteria and will be dis-
cussed below. The subsets resulting from this criteria are called the terminal
subsets.
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Figure 3: Tuning the OSR Parameters

e Step 4: The pattern vectors in the terminal subset(s) are then used to cal-
culate the probability that the actual dependent variable value for MV lies
in each of the DV classes.

The resulting probabilities (that form the obtained pattern) may be used
either for DV predictions, risk management or quality evaluation in a way
that will be described in Section 3.2.

Despite an apparent simplicity, this approach opens up a set of research
questions associated with each of the steps, that need to be further investigated.
The details of each of the steps, as well as some open issues are discussed here:

e Creation of suitable DV and IV classes (Step 1):

If the variable is either continuous or ordinal, the range is divided in a fixed
number of classes. This number may be determined through a trial and
refinement procedure (such a tuning process is illustrated in figure 3).

Without sufficient data, increasing the number IV classes will decrease the
average number of reductions during the OSR process, because with more
classes, there are fewer pattern vectors in each class, and thus smaller subsets
at each step of the reduction. This may preclude certain IVs from contribut-
ing to the pattern. Also, whenever the number of DV classes increases, the
number of pattern vectors per DV class decreases, and thus the calculation
of the conditional probabilities may be less accurate. On the other hand,
decreasing the number of DV or IV classes may make predictions more in-
accurate, because real distinctions in the values of the data may be missed.

If the variable is nominal, categories may be grouped to form IV or DV
classes. With respect to DVs, the grouping will depend on the classification
to be performed as well as the size of the data set, as above. For IVs,
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grouping may be subjective and depends upon the goals of the analysis. For
example, assume one wishes to predict productivity and one of the available
IVs is “programming language”. If the possible instances for the variable are
“C, FORTRAN, Ada, C++,” one might create a class “high level language”
containing Ada, C++ (because they allow better rates of code reuse and
easier testing procedures) and a second class “low level languages” containing
C, FORTRAN. If the amount of data makes it possible, four classes with the
four programming languages may be used.

Choice of the IV selection function (Step 2):

The best we have found so far is Entropy (F'). The measure of entropy
generalized for m classes from information theory can be used as the impurity
evaluation function:

F= i ~P(C;/z)log,, P(Ci/z)

i=1

where P(C;/z) is the conditional probability of z of belonging to the DV
class Cj, i € (1,...,m).
The selected IV is the one that minimizes the selection function, in this

case, entropy. The lower the entropy the more likely we are to have found a
significant pattern.

Determination of the termination criteria (Step 3):

The termination criteria needs to be tuned to the environment, i.e. the
available data set. Logically, if measuring the significance of a pattern by
calculating its entropy is reasonable, then the entropy should be strongly cor-
related to the observed prediction accuracy (i.e. Magnitude of Relative Error
for continuous DVs and Misclassification Rate for discrete DVs). Therefore,
an estimation of the prediction accuracy is possible by looking at the decom-
position entropy.

There are two bounds on the calculation. If there were no termination cri-
teria, the reduction could decompose to a subset of a single pattern vector,
trivially yielding the minimum entropy of zero. On the other hand, if we
stop the reduction too soon, we have not sufficiently decomposed the data
set to provide the most accurate characterization of the object to be assessed.
Thus we are interested in achieving an accurate approximation of the selec-
tion function based upon some minimum number of pattern vectors in the
terminal subsets. To find this minimum number, we can experiment with
the learning sample by examining the correlation between the accuracy and
the selection function (e.g., entropy). If this correlation becomes too weak,
then the acceptable minimal number of pattern vectors in a subset should
be increased. The goal is to find a compromise between a good correlation
andya,sufficient;number,of . decompositions to provide a reasonable accuracy
for predicting the value of the DV. This determines the number of pattern



159

vectors used as our termination criteria. This tuning process is illustrated
in figure 3. One must be concerned with both the class boundaries and the
termination criteria (TC).

o Estimation of the conditional probabilities that the object to be assessed
falls into the various DV classes (Step 4):

A simple rule would be to calculate the probabilities as the ratios of pattern
vectors falling into the various categories versus the total number of pattern
vectors. This is the only solution for discrete DVs because there is no notion
of distance in the range of values. A more refined approach for continuous
DVs might be to sum the distances between the subset pattern vectors and
the class mean for each of the DV classes. Call this T'D,,, where n represents
the class index. Note that T'D,, is inversely proportional to the concentration
of pattern vectors around the class mean for class n. Then calculate:

1- (E_A_P -)
P(Cn/z) ™ -‘_=11TD‘

m

where m is the number of DV classes.

This formula assumes that the probability is inversely related to the total
distance (T'D,) of the pattern vectors to the class mean. This approach
refines the probability calculation since it takes into account the distances
between the subset of pattern vectors and the class means, not just their
membership in a specific class. We can further refine this probability calcu-
lation by defining T'D as the sum of the exponentials of the distances in order
to decrease the weight of the pattern vectors furthest from some particular
class mean.

3.2 Prediction, Risk Management and Quality Evaluation

The three processes, prediction, quality evaluation and risk assessment, can all
be based on a similar quantitative approach—one based on patterns recognized
from past experience. This section describes how OSR. can support each of these
process. Experimental results of the prediction capability are then provided in
section 4.

3.2.1 Prediction

In this case, one is interested in estimating only one dependent variable based on
the set of available independent variables. The dependent variable is a measurable
object characteristic that is not known or accurately estimatable at the time it
is needed. For example, one may wish to predict the error rate expected for a
particularyprojectydevelopmentyprocessyin order to determine whether to apply a
particular intensive code inspection process. So, one tries to estimate the error rate
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based on other characteristics (IVs) that may be measured, evaluated subjectively
with a reasonable accuracy, or estimated through other models.

If the dependent variable is defined on a continuous range (i.e. the notion of
distance between two values on the range is meaningful), the following approach
may be used: by dividing the DV range into m successive intervals (classes C;: i €
(1...m)) and calculating P(C;/z) for each class C;, we have in fact approximated
the actual density function P(DV/z) by assuming it to be uniform in each class
C;. Therefore, the following expected p; value can be calculated on C;:

lower boundary_C; + upper boundary.C;

pi = E[Productivity/C;, z] = 3

In other words, the actual density function is approximated by a histogram,
where each column represents the conditional probability of a particular pattern
vector z that lies in a particular DV class C;. No assumption has been made with
respect to the form of this probability density function. The expected value on
the entire DV range can be approximated as follows:

E[Prod/z)=p~ Y P(Ci/z) x pi

i=1

This expected value can be used as an estimate of the dependent variable.
The average error interval that can be expected may be estimated by using the
correlation of accuracy to entropy. This correlation will be confirmed by the ex-
periments described in Section 5.

If the dependent variable is defined on a discrete range, then prediction
becomes a classification problem: Given a set of probabilities that a particular
pattern vector z belongs to each DV class C;, the decision maker must decide to
which class to assign . The class with the highest probability may not always
be chosen. Rather, we may choose the class based upon the loss associated with
incorrect classifications. This is the Bayesian approach. A risk (or loss) matrix L
has to be defined by the decision maker where L;; represents the loss of having
chosen the strategy appropriate for C; when the DV class (or state of nature) is
actually C;. A Bayesian classifier [9] will try to minimize the conditional average
risk or loss R;j(z) (j = 1 ... m) considering the m defined DV classes.

Rj(z) = Li; P(Ci/z)
i=1

» P(C;/z) represents the probability that pattern vector  comes from the pattern
class C;. The bayesian classifier assigns a pattern vector x to the class j with the
lowest R value.
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3.2.2 Risk management

Software development organizations are interested in assessing the risk associated
with management and technical decisions in order to guide and improve the devel-
opment processes. Referencing [6], the risk associated with an action (e.g. software
development) may be described through three dimensions:

e D1: The various possible outcomes
e D2: The potential loss associated with them

e D3: The chance of occurrence for each outcome

Many kinds of interdependent risks may be encountered during software
development (e.g. technical, schedule, cost), and this makes risk management
complex. Also, the notion of risk is by definition subjective because the associated
loss strongly depends upon one’s point of view. Charette in [6] writes: “One
individual may view a situation in one context, and another may view the exact
same situation from a completely different one”. According to his/her goals and
responsibilities, one will define the risk in different ways, in the form of various
models.

If we try to make the link between the above description of risk and OSR,
the following straightforward associations may be established:

e Outcomes (i.e. dimension D1) and DV classes.

e Potential loss (i.e. dimension D2) and distance on the DV range between
the DV class mean and the planned DV value.

e Chance of occurrence (i.e. dimension D3) and the conditional probability
for each DV class.

In order to analyze risk during software development, we propose the fol-
lowing approach based upon OSR:

First, based on the three previously described risk dimensions, we calculate
the expected difference (distance on the range) between planned and predicted
values for each DV representing a potential risk (e.g. schedule, effort, ...). Let us
call these distances “DV expected deviations”. From a decision maker’s perspec-
tive, the potential loss resulting from his/her decisions is intrinsically a function
of several DV expected deviations that may be seen as a specific and subjective
risk model. Therefore, a “loss function” is used as a risk analysis model and may
be defined as a function that combines several DV expected deviations, parame-
ters (e.g. reflecting management constraints) and constants (e.g. weights). The
calculation details are illustrated in the example below.

Consider the following example with the two continuous DVs, productivity
and fault rate. A budget and schedule have been imposed on the project manager
by upper management. Therefore a specified productivity P, will be required to
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reach the management goals. From the point of view of the project manager, the
risk of failure may be represented as a simple function calculating the Productivity
Expected Deviation (PED):

PED = zm: P(Ci/z) x (Pr — i)

i=1
where y; is the mean of C;.

According to the result of this estimation, the project manager will be able
assess the difficulty of the job and make a decision with respect to the develop-
ment process in order to make a suitable trade-off between quality and productiv-
ity. Some analysis can be performed by the manager to see how the risk evolves
according to controllable project parameters (i.e. some of the independent vari-
ables). If the project manager wants to make a risk/effort trade-off, for example,
in order to improve competitiveness on a commercial proposal, he/she can calcu-
late how the risk evolves according to the productivity required. Based on these
observations, a suitable risk/effort tradeoff can be selected to maximize chances of
success.

One’s perspective of risk may be more complex than the previously defined
function, PED. For example, assume that a contractor wishes to define risk of
financial loss if the system is delivered late and/or there are effort overruns. One
can define the Schedule Expected Deviation (SED) as the expected delay, i.e., the
difference between the planned and predicted schedule and the Effort Expected
Deviation (EED) as the expected effort overrun, i.e., the difference between the
planned and predicted effort expenditures. Then

— Estimated_Size
o SED = PEDxXxAvg_Team_Size

— Estimated_Size
e EED = R

where Estimated_Size is either a parameter, like Avg_Team_Size (i.e. provided
as an input by the manager), or another dependent variable (i.e. the result of some
other estimation process). So the expected financial loss function can be defined
as a function of both variables SED and FED.

Now suppose that the cost of delay on a particular contract has an ex-
ponential relationship to the delay itself. This exponential assumption is based
upon predictions with respect to the delay of other projects dependent upon the
completion of this project and the resulting compensations to be given to the cus-
tomer. Thus, the SED needs to be weighted by some Cost per Delay Unit that is
an exponential function of SED, call this CDU. Also suppose that CEU is the
average Cost per Effort Unit, i.e., the average cost per staff hour for the specific
project development team. Then we can define

ezpected_loss = SED x CDU + EED x CEU
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3.2.3 Quality Evaluation

In any quality model, one needs a baseline in order to be able to make sensible
comparisons. That is, to evaluate how well a particular project performed, one
must be able to assess how well it ought to have performed. OSR generated
predictions can provide such a baseline assessment, since they are based on past
project experience. For example, let us assume that the quality perspectives of
interest (i.e. quality drivers) are productivity and fault_rate, since management
views quality as both reliable and inexpensive software.

Assume that using some project features as IVs, the OSR approach yields
clear patterns (i.e. low entropy) with respect to productivity in the available
data set. These patterns represent the expected productivity distributions in the
current development environment for the project under study. The relationship
between the actual productivity for the project under study and the expected
value of the predicted patterns provides the basis for quality evaluation, from the
productivity perspective.

For example, suppose the actual productivity for the project under study
falls far below the expected value of the predicted patterns. This implies that the
quality of the project with respect to productivity is low. Using the pattern as a
basis of comparison, we may ask where the difference comes from.

Several causes may be investigated: incomplete or inadequate data collec-
tion, some possible new features or variables affecting the development process,
or, of course, the process quality being quite poor.

One may want to describe quality, from the perspective of productivity, as a
function of the difference between the actual productivity on the project, and the
productivity that should have been achieved on the project. Actual productivity
can be measured, but the notion of the productivity that should have been achieved
is more difficult. One might want to determine it as the expected productivity
determined from a collection of similar projects, which can be determined with
OSR. Thus a quality value could be defined as a function the distance between
the actual productivity and OSR generated predicted value. This distance may
be defined as:

Prod_deviation = AP — Y P(Ci/z) x p;

i=1
with AP the actual measured productivity.

If we include in the quality model both the Fault_rate and Productivity qual-
ity drivers and we assume an approach similar to the Prod_deviation evaluation for
calculating a Fault_deviation, then a global quality evaluation may be formalized
by the following quality model.

Let us define NFD as Fault_deviation (i.e. fault rate deviation) normalized
by the fault rate standard deviation in the available data set and NPD as the
equivalent variable for Prod_deviation. Based upon these unitless deviations, we
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define the following quality model:

e If NFD < 0, NPD > 0, the larger |[NFD x N PD]| is, the better the quality.
e If NFD > 0, NPD < 0, the larger |NFD x N PD]| is, the worse the quality.

o If both NFD and NPD are negative, the larger x;g is, the better the
quality.
o If both NFD and NPD are positive, the smaller XE2 is, the worse the

) NPD
quality.

If both NFD and NPD have the same sign and Il_vv_g% has a value close to
1, then quality may be assessed as average or nominal.

This particular quality model takes into account two dependent variables
and illustrates that a quality model may be a subjective function of several dis-
tances on the respective dependent variable ranges. This model might be modified,
according to the user perspective of quality, to change the weighting of the various
factors, e.g., doubling the effect of fault rate in the evaluation of quality.

4 Experimental Results

In this section we demonstrate the effectiveness of the approach by applying the
OSR. modeling process to the problem of effort estimation and showing that OSR
is able to recognize meaningful patterns on the available data sets. Although we
will only be dealing with the prediction capability, this experiment also provides
an indication of the effectiveness of the risk assessment and quality evaluation
capabilities, since the three processes are all based on the conditional probabilities
estimated on the dependent variable range. Therefore the accuracy of the three
formulas are all dependent on the significance of the recognized patterns.

4.1 Description of the Experiment

The largest part of our data set comes from the COCOMO database, consisting
of 63 projects [5]. A second source of data is provided by Kemerer (15 projects),
collected in a COCOMO format and used in an evaluation of a collection of cost
models [7].

The COCOMO projects are a mix of business, system, control, high level
interface and scientific applications. A significant percentage of these projects has
been developed in FORTRAN (38%) and a very small number in Cobol (8%). The
other projects include a variety of data processing applications, primarily devel-
oped in Cobol (87%). The following sections describe an experimental evaluation
of the"OSR technique as applied to effort estimation based upon these two data
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sets. Results obtained with the OSR approach are compared to results from other
standard approaches in order to provide some basis for comparison.

In what follows, we will use the term data set to refer to the combined
COCOMO and Kemerer data sets, test sample to refer to the Kemerer data set
(the sample on which we are going to assess the OSR capabilities), and learning
sample (for each optimized set reduction) to refer to the data set minus the project
that is being assessed. Thus, 15 optimized set reductions will be performed, one
for each of the test sample pattern vectors. Each time, the pattern vector to be
assessed will be remcved from the complete data set to form the learning sample
(77 projects).

However, one must consider that various subsets of the 78 projects have
been developed in various environments, at different points in time and collected
by different people according to different procedures, in different organizational
structures. The difficulties in tailoring the COCOMO cost drivers to various en-
vironments causes a loss of consistency in the data collection regardless of the
analysis technique. Moreover, it is important to notice that the project productiv-
ities lie over a very large range (i.e. from 20 to 2491 LOC/MM). The 78 pattern
vector data set is small enough to assess the capability of the approach to deal
with small samples. The number of independent variables used (15) compared to
the available data set and the nature of these IVs (i.e. ordinal, nominal) make any
pure regression analysis based approach difficult to apply.

Kemerer found that all the models investigated showed a large relative er-
ror in predicting effort, ranging from 772% for SLIM and 583% for intermediate
COCOMO, to 103% for function points and 85% for ESTIMACS [7]. According
to the author, one of the reasons for which the last two models yielded substan-
tially better results is that they are built on business data processing application
projects. Since the data used to develop the function point and ESTIMACS mod-
els were either not available or not provided in a COCOMO format, we cannot
include them in our data set even though they may be more suitable as a learning
sample for the fifteen projects of the test sample.

In the following sections, we first summarize the results obtained from the
use of OSR to predict effort for the fifteen projects in the test sample based on their
COCOMO cost drivers, and then compare these predictions with those obtained
using two more traditional approaches:

e a calibrated intermediate COCOMO model,

e a stepwise regression approach.

4.2 Predicting Development Effort Using OSR

As the dependent variable, we use project productivity (i.e. size/effort). The
size metric used is the “Adjusted Delivered Source Instruction” (ADSI) as defined
in'[5]; and the effort unit is staff-months. The independent variables are the
COCOMO cost drivers. The ranges for the I'Vs have been divided into two intervals
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[ Project | Act. Prod. | Pred. Prod. | Act. Effort | Pred. Effort [ MRE | Entropy |
1 884 299 287 846 1.94 0.63
2 491 935 82 44 0.46 0.24
3 580 674 1107 668 0.40 0.45
4 2467 643 87 333 2.83 0.06
5 1338 952 336 473 0.41 0.27
6 595 1196 84 42 0.50 0.47
7 1853 1016 23 42 0.83 0.47
8 1535 1006 130 199 0.53 0.52
9 2491 431 116 670 4.78 0.56
10 542 1028 72 38 0.47 0.06
11 983 1028 258 247 0.04 0.06
12 557 1025 231 125 0.46 0.06
13 1028 1035 157 155 0.01 0.06
14 667 1070 247 154 0.38 0.27
15 881 964 70 62 0.11 0.06

Table 1: Experimental Results

(i.e. the boundary being located either just below or above nominal depending
on the IV), and the DV (productivity) range into five intervals, each containing
an equivalent number of pattern vectors, to the extent possible. The termination
criterion was set to 8 projects, after being tuned based upon the learning sample.
No more sophisticated decomposition heuristic was used. OSR was used to predict
productivity, and effort was estimated as size (ADSI) divided by the predicted
productivity.

Table 1 gives the results for each of the fifteen data points of the test sample.
The columns contain the project number, the actual productivity, the predicted
productivity, the actual effort, the predicted effort, the MRE of the predicted
effort, and the entropy yielded by the OSR process.

Overall, we see a positive relationship between entropy and the predictive
error, MRE. When entropy is low, the error is low, and when entropy is high,
the error is high. The three most accurate predictions, for projects 11,13 and 15,
occurred when entropy was at it lowest value.

One problem that may affect the analysis is that the estimation accuracy
can be significantly disturbed when the actual productivities of projects are close
to the extreme boundaries of the productivity ranges. This is because the density
of projects in these parts of the range may be much lower than projects found in the
middle of interval ranges. Only intuition based upon understanding the particular
situation can help the manager detect an unusual, extremely low /high productivity
so the effort estimate may be increased/decreased. Obviously, something that has
never or rarely occurred is difficult to predict.

Despite an encouraging predictive accuracy, the two data points with highest
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productivity (projects 4 and 9 in Table 1) yield large effort overestimation. These
projects have a productivity far above the other projects of the learning sample.
More information on these particular projects would be necessary to understand
why the productivities were so high. It appears clear that something occurred that
was not captured by the ADSI and the COCOMO cost drivers. However, in order
to keep these projects from introducing noise in our analysis, we will analyze the
results obtained both with and without them in the learning sample.

Discounting the projects with the extreme productivities, the worst predic-
tions occurred on projects 1, 7, and 8. However, these predictions also had the
highest associated entropies, supporting our belief that entropy can serve as an
indicator of predictive accuracy.

Overall, the mean MRE of the OSR predictions was 94%. However, if
the projects with the extreme productivities are not considered, the mean MRE
becomes 50%, an improvement over what was cited in [7].

4.3 An Evaluation of the OSR Technique

To allow for an evaluation of the use of OSR technique for the prediction of pro-
ductivity and effort, a comparison with more conventional techniques is provided.
A calibrated intermediate COCOMO model was built (for each project in the test
sample) by recalculating the nominal equations based on the learning sample, as
recommended in [5]. A second model was built using a stepwise regression pro-
cedure to select the significant productivity drivers, and dividing size (ADSI) by
this predicted productivity to obtain an effort prediction. Again, this was done
once for each project in the test sample.

Table 2 summarizes the results by giving, for three entropy intervals, the
mean Magnitude of Relative Error of the effort estimation for each modeling tech-
nique, (columns MRE-OSR, MRE-CC for calibrated COCOMO and MRE-SR
for stepwise regression), and the percent of the test sample falling in that inter-
val, (column %TS). This provides some insight into the correlation between the
accuracy of the effort estimation and the entropy. The results are provided both
with and without projects 4 and 9. It should be noted that all three techniques
performed poorly on these projects.

Comparing the results of the OSR and regression based techniques leads to
several observations. First, for this data set, the OSR technique provides a signifi-
cantly better prediction than either a tailored COCOMO or a stepwise regression.
For 10 of the 15 projects, the prediction of the OSR model was more accurate
than that of both regression models. If outliers are not removed, the two regres-
sion based models had an average MRE of 206% and 115% respectively, while the
OSR model had an average MRE of 94%. If the projects that showed extremely
high productivities are not considered, the MRE for the regression models becomes
104% and 72% respectively, while the OSR model is 50%. The results for OSR
aremuchrbettersthat:the regressionstechniques in the two lower entropy categories
(37% vs. 109% and 66%, respectively, for the calibrated COCOMO and the step-
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| Data Set | Entropy Interval | MRE-OSR | MRE-CC | MRE-SR | % TS |

all projects F < 0.06 0.65 0.34 0.78 40
0.06 < F < 0.47 0.49 1.71 0.80 40

F > 0.47 2.46 6.22 2.61 20

any 0.94 2.06 1.15 100

4,9 removed F < 0.06 0.22 0.33 0.48 38
0.06 < F < 0.47 0.49 1.71 0.80 46

F > 047 1.24 0.77 1.03 15

any 0.50 1.04 0.72 100

Table 2: Comparison of the Three Techniques

wise regression models). However, in the highest entropy class, all techniques fare
poorly. For OSR, this result should have been expected, since poor entropy implies
that no significant pattern has been found, and thus OSR is not expected to give
a very accurate result. Consequently, in the highest entropy category, regression
based techniques may perform better.

For the OSR method, the predictions are clearly more accurate when the
associated entropy is low. If, using the reduced data set, we test the null hypothesis
that the MRE means of the three categories are equal against the hypothesis that
they are not equal, we can conclude that there is a difference among the mean
MREs at the 0.03 level of significance. Therefore, whenever one makes an estimate,
the entropy of the pattern on which the estimate is based can be used to provide
an assessment of the accuracy of the estimate. For example, in this environment,
if the obtained entropy is around 0.06, the expected accuracy should be around
22%, according to the results presented in table 2.

One clear benefit of the OSR technique is this ability to provide an indi-
cation of the expected accuracy of the prediction, as demonstrated by the clear
correlation of MRE to entropy. Projects with characteristics that have previously
shown widely varying productivities (i.e. no clear patterns) are flagged with high
entropies, allowing the manager to recognize that the prediction may be suspect.
The regression based models provide no such indication of the accuracy for an
individual prediction.

For example, the tailored COCOMO model provided relatively accurate
predictions for projects of the semi-detached mode (an average MRE of 32%),
except for a poor prediction for project 8, with an MRE of 133%. The prediction
for project 8 using the OSR model was better (MRE of 53%), but still not very
accurate. However this prediction was flagged with a high entropy, indicating an
unstable prediction. The regression based models provide no indication of the
potential of the inaccurate prediction, while the OSR technique indicates that no
significant pattern has been recognized in the available data set.

One interesting observation in the performance of the regression based tech-
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niques is that the OSR produced entropy also appears to provide an indication as
to the quality of these predictions. Both the calibrated COCOMO and stepwise
regression based models have a better accuracy when the associated entropy is
low than when it is high. Thus it appears that the two approaches may be very
complimentary. The regression techniques may fare better when a high entropy
was generated (i.e. no pattern was found). In any case, the entropy can serve as
an indicator of the expected accuracy of the prediction, and help to determine the
most appropriate prediction method.

5 Conclusions

Optimized Set Reduction (OSR) has been developed in order to address data
analysis issues within the software development process. The procedure has the
following positive characteristics:

e It makes no assumptions with respect to probability density functions on
the dependent and independent variable ranges. It does not attempt to fit
data to predefined distributions, rather it uses the data to approximate the
actual distribution (i.e. patterns). No particular mathematical relationship
between the DV and IVs needs to be assumed. Thus OSR seems to fulfill
R;. Also, it handles discrete and continuous IVs in a natural and consistent
way, and therefore meets Ry.

e It allows an estimation of accuracy for each prediction so we can answer the
question: Is this estimate usable? This fulfills R;. When relevant IVs are
not available at the time of the prediction, OSR still allows a prediction to be
made; however, OSR will provide a warning if the prediction is expected to
be poor. While other techniques provide model-level warnings (such as a low
R-squared for regression techniques), OSR will also report on the predictions
where it is still expected to be accurate. In these circumstances, OSR may
be more useful to the manager than the other techniques. This satisfies
in part R3 (i.e. missing information). The issue of outliers is still under
investigation.

e It provides an automated refinement of the model as new data is incorporated
into the data set. The process for selecting the most relevant IVs from those
available in the data set can be automated. Thus, the prediction process
may automated and supported by a tool in an effective way.

The results of the preliminary experiments have been encouraging, since the
predictions obtained with OSR, typically were more accurate than those of other
modeling techniques, and the entropy of the extracted subset was found to have a
strong correlation with the MRE of the prediction.

The technique has'been applied to other problems of the software develop-
ment process, such as classifying|components as likely to be error prone or difficult
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to maintain based on their structural characteristics. The preliminary results from
these experiments are reported in [2, 4]. Also under investigation are techniques to
support interpretation of the patterns, to better facilitate improvement—orineted
software development. A prototype tool supporting the OSR approach has been
developed at the University of Maryland as a part of the TAME project [1].
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CALIBRATION OF SOFTWARE COST MODELS TO DOD
ACQUISITIONS

Audrey E. Taub
The MITRE Corporation
Bedford, Massachusetts 01730

INTRODUCTION

During a 1987 model recalibration study [1], the MITRE Cost Analysis Technical
Center (CATC) showed that COCOMO [2] models significantly underestimated USAF
Electronic Systems Division (ESD) software project efforts and schedules. Subsequently,
new CATC models were calibrated based on a regression analysis of historical ESD and
related programs. Our current research has focused on two goals: (1) to expand our
software database of typical ESD software developments, and (2) to develop statistically-
based software models that improved upon our ability to estimate the effort and schedule
of ESD software developments. The recent database effort involved the validation and
updating of the existing CATC database and the addition of four new data points. The
statistical analysis was aimed at improving effort and schedule predictive models through
the use of various regression methodologies such as linear and nonlinear regression,
correlation analysis, and error analysis. The purpose of this paper is to discuss the
results of this research, which include the development of six new effort models, one new
schedule model, and an uncertainty methodology for determining confidence limits around

effort and schedule point estimates.

During this discussion, we will make reference to various model "types” such as
basic embedded and nominal semidetached, which correspond to the definitions provided
by B. W. Boechm [2]. Familiarity with Boehm's work is assumed on the part of the
reader.
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DATA ANALYSIS

In this section we present the effort and schedule equations resulting from our
research along with the criteria we used for model selection. A brief description of our
database is also included. It is very important to understand the type of data on which
these models are based if the models are to be used on projects outside the ESD

environment.

The effort data are analyzed in terms of what we have defined as subsystems. A
subsystem can be a single Computer Software Configuration Item (CSCI) or an
aggregation of CSCIs where each cannot be developed in isolation from the other(s). The
subsystems themselves are defined as being relatively independent of each other, in the
sense that the people developing different subsystems do not need to communicate
extensively with each other and the software of one subsystem does not require extensive
integration testing with another subsystem. For example, a data reduction CSCI
(subsystem) can often be developed in relative isolation from the applications software,
since it is only dependent upon receiving files of specified format, from which it will
extract the data and perform specific analyses. Or, a signal processing subsystem for a
radar system can be developed in isolation from the applications that perform detection,
tracking, correlation, and identification of objects.

Schedule data, on the other hand, are analyzed at the project level. While individual
CSCI or subsystem development efforts may be independent of each other, the overall
schedule of the project is dependent upon the completion of every CSCI or subsystem.
In addition, numerous resource constraints (technical personnel, computers, support staff)
limit the number of software development tasks that can be performed in parallel. Asa
consequence, we believe the overall schedule is more closely correlated with total effort

expended on all subsystems than with the effort expended on any single CSCI or

subsystem.
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The CATC Database

The CATC software calibration database contains descriptive data on 35 ESD
software subsystems whose sizes range from 6 to 264 KEDSI!. The applications are

varied and include command and control, radar, simulation, and training.

Table 1 contains a summary of the CATC software development data used during
this study. The table is divided into two sections, one for embedded mode subsystems
and one for semidetached mode subsystems. For each subsystem we present KEDSI,
actual effort measured in staff months (SM), nominal effort? in SM, the higher order
language (HOL) in which the program was written, and the productivity (Prod) given in
equivalent delivered source instructions (EDSI) per SM. Table 2 contains project level .
schedule data and includes KEDS]I, effort, and schedule (or project duration) measured in

months.
New Effort and Schedule Equations: A Summary

The principle method of analysis throughout this study was regression analysis,
which included the use of linear least squares and nonlinear regression techniques. These
techniques were applied to our entire data set as well as subsets of the data. The subsets
were generated by subdividing the data by size (lines of code), application (e.g., radar,
command and control), and language (e.g., FORTRAN, Jovial). A number of regression
analyses were performed until we determined a set of equations whose standard errors were
lower than those of our previously calibrated models. Table 3 contains a summary of our

recalibrated effort and schedule equations. We found that subdividing the embedded

1 KEDSI is the number, in thousands, of equivalent delivered source instructions as
defined by B. W. Boehm [2].

2 Nominal effort is. computed by dividing actual effort by the effort adjustment factor
(EAF) [2].
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Table 1. CATC Software Database Summary Statistics
Embedded Data
Sub- Actual Nominal

system Effort Effort HOL Prod
# KEDSI _ (SM) (SM/EAF) Language (EDSI/SM)
1 6.1 150 142 Assembler 40
2 6.1 85.8 51.7 C 71
3 9.1 13.1 18.5 Jovial 693
4 104 691 601 Jovial 15
5 11.5 169 91.5 Assembler 68
6 16.0 61.3 51.1 FORTRAN 261
7 16.9 56.0 72.7 Assembler 302
8 20.3 241 119 CMS-2 84
9 25.6 724 94.0 Assembler 353
10 25.8 161 31.6 Jovial 160
11 26.2 289 85.1 EDL 91
12 37.5 157 123 FORTRAN 239
13 450 469 539 FORTRAN 96
14 55.7 341 182 Assembler 164
15 63.1 430 229 Jovial 147
16 75.1 1678 1459 Jovial 45
17 103 1222 N/A FORTRAN 84
18 106 479 417 Jovial 221
19 106 1474 780 FORTRAN 72
20 144 415 256 C 346
21 157 2043 1310 Jovial 77
22 162 3499 1871 FORTRAN 46
23 232 5103 2700 CMS-2 45
24 264 6496 2980 FORTRAN 41
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Table 1. (Concluded)

Semidetached
Actual Nominal
Sub- Effort Effort HOL Prod
sys;em KEDSI (SM) (SM/EAF) Language (EDSI/SM)
25 540 522 250 Jovial 103
26 7.41 28.0 8.7 Jovial 265
27 8.70 115 61.3 Jovial 75
28 8.78 94.0 79.7 Jovial 93
29 9.00 59.1 444 FORTRAN 152
30 9.05 53.0 70.7 Jovial 171
31 12.9 132 66.8 Jovial 98
32 46.4 158 180 C 294
33 73.1 385 196 Jovial 190
34 139 586 814 FORTRAN 237
35 165 704 1006 Assembler 235

mode data by size (in terms of lines of code) was the most effective means of reducing
modeling error. Thus, embedded mode subsystems have models designated as small and
large, where small represents models based on subsystems whose size fell between 6 and
63 KEDSI and where large represents models based on data whose size fell between 75
and 264 KEDSI. Semidetached data were originally subdivided into small (seven points)
and large (4 points) subsets. Although a small improvement was made in terms of
reducing the standard error, it was not substantial. Therefore, we decided not to adopt two
separate models on the basis of such limited data. The selected nominal embedded mode
effort models were based on ordinary least squares methodologies [3], whereas the selected
basic embedded mode effort models for small and large subsystems, basic semidetached
models, and the new schedule model were based on nonlinear regression methodologies

[41.
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Table 2. Project Level Schedule Data

Project Effort Schedule
Designator KEDSI (SM) (Months)

A 16 61 26

B 20 157 18

C 26 241 33

D 38 289 29

E 45 469 13

F 47 335 26

G 139 586 26

H 169 1231 33

I 193 623 31

J 200 2862 35

K 222 5103 75

L 233 2350 40

M 250 6496 43

Although it may seem unusual to have obtained linear nominal models from data
that is typically associated with a nonlinear model, the phenomenon can be explained as

follows. Consider the equation for productivity implied by the nominal effort equation,

E = a(EAF)(KEDSI)®

Productivity = EZSI = (“’:0 )( E;F )(KEDSI)(I_b).
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Table 3. New Calibrated Effort and Schedule Equations

Model Model Prediction
# Type Equations
1 Basic Embedded/Smalll E =91.0 + 0.66 (KEDSI) 1-32
2 Basic Embedded/Large2 E = 425 + 0.09 (KEDSI) 200

3 Nominal Embedded/Small E/EAF =46.0 + 2.31 (KEDSI)

4 Nominal Embf:dded/I_.arge3 E/EAF = -462 + 12.4 (KEDSI)

5  Basic Semidetached E = 10.7 (KEDSI) 9-82
6  Nominal Semidetached E/EAF = 45.0 + 0.09 (KEDSD)1-82
7 Schedule s =590 (E) 0-25

1. Small refers to subsystems that are > 6 and < 75 KEDSI.

2. Large refers to subsystems that are > 75 KEDSI and < 264 KEDSI.
3. Although this model has a negative intercept, negative effort is never
predicted because KEDSI 275.

This expression implies the following:
if b = 1, productivity does not vary with size
if b> 1, productivity decreases with an increase in size

if b < 1, productivity increases with an increase in size.



178

However, it is possible that the EAF multiplier is correlated with size. In our
embedded mode data we found that productivity is correlated with the inverse of the EAF,

ie.,

Pr OdUCtiVity = —E% .

where C is a proportionality factor. This expression is comparable to the previous
expression for productivity when b = 1. Thus, when the variable EAF is introduced into
the nominal effort equation, the parameter b may be one, and the effort linear with respect
to size. The EAF may, in effect, be capturing any relationship that exists between
productivity and size.

The basic semidetached model (model 5) has an exponent less than one, a
phenomenon often interpreted in the literature as representing an economy of scale. That
is, it implies that the greater the number of lines of code to be developed, the smaller the
dollars per line of code. However, we are not ready to make this generalization based on

such a limited data set. Figure 1 illustrates the basic semidetached data and corresponding

prediction equation.
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Figure 1. Basic Semidetached Data with Prediction Equation
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The nominal semidetached model (model 6), unlike the nominal embedded models, is
nonlinear. Figure 2 illustrates the data along with the three-parameter prediction model.
In this case, the EAF values are large (2.1, 3.2, 1.9) for several of the smaller

subsystems
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