
www.manaraa.com



www.manaraa.com



www.manaraa.com

Thomas R. Gulledge 
vv illiam P. Hutzler (Eds.) 

Analytical Methods 
in Software 
Engineering Economics 

With 45 Figures 

Springer-Verlag 
Berlin Heidelberg New York 
London Paris Tokyo 
Hong Kong Barcelona 
Budapest 



www.manaraa.com

Professor Dr. Thomas R. Gulledge 
The Institute of Public Policy 
George Mason University 
4400 University Drive 
Fairfax, VA 22030-4444, USA 

Dr. William P. Hutzler 
Economic Analysis Center 
The MITRE Corporation 
7525 Colshire Drive 
McLean, VA 22102-3481, USA 

ISBN-13: 978-3-642-77797-4 
DOl: 10.1007/978-3-642-77795-0 

e-ISBN-13: 978-3-642-77795-0 

This work is subject to copyright. All rights are reserved, whether the whole or part ofthe material is 
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broad
casting, reproduction on microfilms or in other ways, and storage in data banks. Duplication ofthis 
publication or parts thereofis only permitted under the provisions ofthe German Copyright Law of 
September 9, 1965, in its version of June 24,1985, and a copyright fee must always be paid. Violations 
fall under the prosecution act of the German Copyright Law. 

© Springer-Verlag Berlin· Heidelberg 1993 
Softcover reprint of the hardcover I st edition 1993 
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence 
of a specific statement, that such names are exempt from the relevant protective laws and regulati
ons and therefore free for general use. 

214217130-543210 - Printed on acid-free paper 



www.manaraa.com

PREFACE 

This volume presents a selection of the presentations 

from the first annual conference on Analytical Methods in 

Software Engineering Economics held at The MITRE Corporation 

in McLean, Virginia. The papers are representative of the 

issues that are of interest to researchers in the economics 

of information systems and software engineering economics. 

The 1990s are presenting software economists with a 

particularly difficult set of challenges. Because of budget 

considerations, the number of large new software development 

efforts is declining. The primary focus has shifted to issues 

relating to upgrading and migrating existing systems. In this 

environment, productivity enhancing methodologies and tools 

are of primary interest. 

The MITRE Software Engineering Analysis Conference was 

designed to address some of th,~ new and difficult challenges 

that face our profession. The primary objective of the 

conference was to address new theoretical and applications 

directions in Software Engineering Economics, a relatively 

new discipline that deals with the management and control of 

all segments of the software life-cycle. The discipline has 

received much visibility in the last twenty-five years 

because of the size and cost considerations of many software 

development and maintenance efforts, particularly in the 

Federal Government. 

We thank everyone who helped make this conference a 

success, especially those who graciously allowed us to 

include their work in this volume. 

Thomas R. Gulledge 
The Institute of Public Policy 

George Mason University 
Fairfax, Virginia 22030 USA 

William P. Hutzler 
Economic Analysis Center 

The MITRE Corporation 
McLean, Virginia 22102 USA 



www.manaraa.com

TABLE OF CONTENTS 

I. Plenary Presentation 

Economic Analysis of Software Technology 
Investments 

Barry W. Boehm 

II. Software Economics 

1 

Measuring the Development Performance of 39 
Integrated Computer Aided Software Engineering 
(I-CASE): A Synthesis of Field Study Results 
From the First Boston Corporation 

Rajiv D. Banker and Robert J. Kauffman 

Returns-to-Scale in Software Production: 
A Comparison of Approaches 

Patricia E. Byrnes, Thomas P. Frazier, and 
Thomas R. Gulledge 

An Economics Model of Software Reuse 

R.D. Cruickshank and J.E. Gaffney, Jr. 

75 

99 

Experience With an Incremental Ada 139 
Development in Terms of Progress Measurement, 
Built-in Quality, and Productivity 

Donald H. Andres, Paul E. Heartquist, and 
Gerard R. LaCroix 

Recognizing Patterns for Software Development 151 
Prediction and Evaluation 

Lionel C. Briand, Victor R. Basili, and 
William M. Thomas 



www.manaraa.com

VIII 

Calibration of Software cost Models to 
DoD Acquisitions 

Audrey E. Taub 

Estimating Software Size From Counts of 
Externals: A Generalization of Function 
Points 

J.E. Gaffney, Jr. and R. Werling 

171 

193 

CECOM's Approach for Developing Definitions 205 
for Software Size and Software Personnel: Two 
Important Software Economic Metrics 

Stewart Fenick 

An Economic Analysis Model for Determining the 237 
Custom Versus Commercial Software Tradeoff 

Michael F. Karpowich, Thomas R. Sanders, and 
Robert E. Verge 



www.manaraa.com

Economic Analysis of Software Technology Investments 

Barry W. Boehm 
Defense Advanced Research Projects Agency 

University of California, Los Angeles 
Computer Science Department 

Los Angeles, CA 90024 

1 • Introduction 

1.1 Background 

Many large organizations are fmding that: 

• Software technology is increasingly critical to their future organizational 

performance. 

• Organizational expenditures on software are increasing. 

Investments in software technology provide opportunities to reduce 

software costs and increase organizational performance. 

The U.S. Department of Defense (DoD) is one such organization. It has 

embarked on the development of a DoD Software Technology Strategy 

(SWTS)[Boehm91a] to: 

• Identify its current and future software technology needs. 

• Analyze and adjust its current software technology investment portfolio to 

better meet DoD needs. 

• Formulate alternative DoD software technology investment portfolios, 

and analyze them with respect to DoD needs and estimated cost savings. 

This paper summarizes one of several analyses undertaken to evaluate 

alternative DoD software technology investment portfolios. The analysis estimates the 

DoD software cost savings likely to result from alternative levels of DoD investment 

and calculates the resulting estimated returns on investment (ROI). 

The dollar figures used in this paper represent current and proposed alternative 

technology investment and savings figures used at one stage of the development of the 



www.manaraa.com

2 

SWTS. At this point, they are representative of SWTS data and conclusions, but not 

necessarily accurate with respect to the fmal figures to be used in the SWTS. 

1.2 Overview 

The software technology return-on-investment (ROI) analysis presented in this 

paper considers three alternative programs: 

1. A Baseline: No significant DoD investments are undertaken to improve 

DoD software technology. DoD would continue to benefit at the current 

4% rate of software productivity improvement resulting from commercial

sector software improvements. 

2. A Current software technology program: Achieving the best results 

possible from a program that reflects the current flat-dollar software 

technology budgets of most DoD organizations. In then-year dollars, the 

Current Program level used in this analysis is around $195M1year 

between FY1992 and FY1995. Its level is $192M in FY1996; this 

$ 192M is extended for each year between FY1997 and FY2008. In 1992 

dollars, the resulting 2008 level of investment would be $88M. 

3. An Achievable software technology program, described in further detail in 

the SWTS. This program would: increase the DoD software technology 

level of investment from $195M to $410M between FY1992 and 

FYl997, and apply a 3% growth factor to this $410M baseline thereafter. 

By FY2008, this would be $568M in 2008 dollars and $260M in 1992 

dollars, using a 5% deflation rate. 

The major questions to be answered by the ROI analysis were: 

• Can the Current Program be justified with respect to the no-investment 

Baseline situation? 

• Can the Achievable Program be justified with respect to the Current 

Program? 

Can the Achievable Program or the Current Program realize the SWTS 

objective of reducing software unit costs by a factor of two in the year 

2000? 

The ROI analysis is carried out by estimating a set of 1992-2008 time series 

of technology fractions-of-time-used (FTs) and fractional-savings (FSs) resulting from 



www.manaraa.com

3 

the Current and Achievable software technology programs, and using the model 

presented in Section 2 to calculate the resulting cost savings, net present values, and 

ROIs.1 

Section 2 describes the structure of the SWTS ROI model. Section 3 provides 

a summary of the inputs used to calculate the ROI results, with rationales relating the 

choice of ROI input quantities to the expected stream of software technology results 

produced by the Current and Achievable Programs. Section 4 presents and discusses 

the resulting estimated DoD software cost savings and ROI results. Section 5 presents 

the resulting conclusions. 

2 • SWTS ROI Model 

The SWTS ROI model begins by computing the estimated cost savings 

resulting from three major sources: "work avoidance" through software reuse 

technology improvements; "working smarter" through process technology 

improvements; and "working faster" through improvements in software tools and 

environments. These cost savings are calculated for both development and maintenance 

from the years 1992 through 2008.2 

Achieving the end results of the Current and Achievable software technology 

programs requires investment in new software technologies to achieve cost savings. 

To assess the potential worth of these investments, two financial measures of merit are 

computed. One measure is the ROI mentioned above. The other measure is net 

present value (NPV). Both measures account for the time value of money. 

1 For a complete definition of net present value and ROI, see section 2.4. 

2This analysis has been automated in a model using Microsoft Excel™ macros by The 
Institute for Defense Analyses. The resulting tool provides a set of pull-down menus 
that allow the user to rapidly change a number of assumptions underlying the analysis 
and obtain graphic output of the resulting savings. See [BOEHM91b]. 



www.manaraa.com

4 

The remainder of this section describes the model structure and parameters, 

shows algebraic representations of how cost savings are calculated, and provides 

examples of how the formulas are applied to the alternative SWTS programs. 

2. 1 Model Structure and Parameters 

The Baseline scenario used as the starting point of the analysis represents the 

estimates of the annual level of DoD software expenditure in the absence of any 

significant DoD software technology investment The analysis assumes that for the 

initial year, 1992, DoD software expenditure will be $24 billion (B). This estimate is 

conservative: 1990 estimates have ranged from $24B to $32B. The analysis also 

assumes that this number will increase over time at a 5% rate through the year 2008. 

This growth rate was calculated assuming that the annual DoD software output will be 

reduced to a growth rate of 4% by DoD budget limitations. This demand growth would 

be absorbed by improvements in commercial software technology, which are likely to 

continue to produce 4% annual productivity gains. Thus, the Baseline scenario 

represents a constant DoD software work force level; the 5% cost growth rate results 

from an assumed 5% inflation rate. This estimate is also very conservative. The 

analysis assumes that the distribution of this expenditure between development and 

maintenance is 30% for development and 70% for maintenance. Using the information 

from above, the 1992 baseline would be $7.2B for development and $16.8B for 

maintenance. 

Table 1 below summarizes these parameters and the sources upon which th~y 

are based. 

The estimated effects of the Current and Achievable DoD technology programs 

are calculated by adjusting the original cost baseline by annual estimates of the cost 

saving effects of work avoidance, working smarter, and working faster on both software 

development and maintenance. Note that the manner in which the baseline costs are 

computed implies that there will be a 4% gain in productivity whether any of the 

initiatives are employed or not. The adjustments to the baseline through work 

avoidance, working smarter, and working faster are in addition to such "natural" 

productivity trends. 



www.manaraa.com

5 

Table 1: Baseline Parameters 

Eillametet Cate2QO:: ElllameteI VaXlle QI Name ~ 

Total DoD 1992 Software $24 billion ElA90 ($32B) 
Spending AVWK91 ($3IB) 

DevelopmentlMaintenance Split 30% Development, BOEHM:81, 
70% Maintenance EIA90 

Growth Rates: 

DoD SWCost 5% AVWK91 (7%) 
ElA90 (1%) 

Productivity Growth 4% MARTIN83, 
LEVlTAN88 

Inflation rate 5% 

As noted above, the analysis identifies three sources of cost savings caused by 

the Initiative; these are formally described as end product cost avoidance (EPCA) , 

process cost avoidance (PCA), and process cost reduction (PCR). EPCA represents 

cost savings from avoiding the need to write more lines of code: via software reuse, 

application generators, commercial off-the-shelf (COTS) software, Ada generics, and 

other product-related improvements. PCA represents savings from process-related 

improvements that enable projects to avoid costly rework by "working smarter." 

Examples of PCA technology improvements are proto typing and risk management 

technology, and those captured by the Software Engineering Institute (SEI) software 

process assessment. PCR represents savings from improvements in software 

engineering environments (SEEs) and better, more interoperable tools that partially 

automate software development and maintenance, enabling people to "work faster" on 

those core portions of the software process remaining, after one has eliminated 

avoidable product efforts via EPCA and avoidable process efforts via PCA. 

Table 2 summarizes the sources of savings used in this analysis. 



www.manaraa.com

6 

Table 2: Savings Sources 

~ EormalNam~ Abb~yiatiQD Cbar&:teriSUI;; 

work avoidance end product cost EPCA reuse 
avoidance 

working smarter process cost avoidance PCA rework avoidance 

working faster process cost reduction PCR tools & environments 

The analysis is divided into a development and maintenance portion. Cost 

savings are determined by the multiplicative product of the fraction of time the 

improvements are used and the fraction of savings realized when the improvements are 

used. 

2.2 Calculating Development Savings 

As noted above, the analysis estimates the savings resulting from software 

technology improvements for the years 1992 to 2008. For each year and source of 

savings (EPCA, PeA, and PCR for both development and maintenance), some value 

for FS from the use of technologies and some FT value are postulated. The proportion 

of cost avoidance caused by a given source of savings in a given year is calculated by 

multiplying FS by FT. The product of FT and FS is then subtracted from 1 and the 

result is multiplied by the annual baseline cost to give the annual cost under a software 

technology improvement program. 

An example may make this computation clear. If one were to estimate the FS 

from EPeA in the year 2000 to be 80% and the fraction of software reused rather than 

being developed (FT) to be 12%, the resulting savings would be 0.80 * 0.12 = 0.096 

or 9.6%. Subtracting this value from 1 gives 0.904, which could be thought of as a 

residual cost fraction (RCF), the fraction of costs left after avoidable end-product costs 

have been eliminated. Using the baseline development cost for the year 2000, which is 

computed (assuming 5% compounded growth from a 1992 value of $7.2B) to be 

$10.6B, the new costs would be $10.6B * 0.904 = $9.6B. This means $1B of savings 

from development reuse or EPeA would come in the year 2000. Similar calculations 

would be applied sequentially for PeA and PeR savings. For example, the FT and FS 



www.manaraa.com

7 

for PCA in 2000 are estimated to be 75% and 16%, respectively. Thus 0.75 * 0.16 = 

0.12 or 12%. The RCF would be 1 - 0.12 = 0.88. Applying the RCF to the $9.6B 

yields $8.45B. Similarly for the PCR, FT and FS for 2000 are 75% and 7%, 

respectively. The RCF is calculated to be 0.948. Applying this to the $8.45B yields 

$8.0lB. The difference between the baseline development estimate, $10.6B, and the 

estimated savings from all of the three sources, $8.01B, is the total dollar development 

savings, in this case, $2.59B in 2000. 

The example above is summarized in Table 3. 

Table 3: Algebraic Example of Year-2000 Development EPCA 
Savings 

Catego!! 

EPCA 

PCA 

PCR 

Total 
ADS 

RCF ADC RADC ADS 

0.904 = 1 - $1O.6B $9.6B = $10.6B $1.0B = $10.6B - $9.6B 
(0.8 * 0.12) * 0.904 

0.88 = 1 - $9.6B $8.45B = $9.6B $1.15B = $9.6B - $8.45B 
(0.75 * 0.16) * 0.88 

0.948 = 1 - $8.45B $8.0lB = $8.45B $0.44B = $8.45B - $8.0lB 
(0.75 * .07) * 0.948 

$2.59B 

Notes: ADS = annual development savings. RADC = residual annual 
development cost. ADC = annual development software cost. RCF = residual 
cost fraction; computed as 1 - (FT x FS) for each component of savings. 
ADS = ADC - RADC. RADC = ADC x RCF. 

2.3 Calculating Maintenance Savings 

The analysis also estimates the savings for maintenance resulting from 

software technology improvements for the years 1992 to 2008. For each year, FTs and 

FSs are estimated. The technologies and processes that cause these savings are listed 

below. 

EPCA: (1) use of COTS and (2) the megaprogramming technology 

described in the SWTS: Ada generics, domain-specific software 

architectures (DSSAs), module composition technology, application 

generators. 



www.manaraa.com

8 

PCA: (1) improved maintenance process and (2) improved 

understandability of software. 

PCR: (1) increased use of tools and environments and (2) better 

structured, easy-to-modify software. 

Table 4 presents a similar algebraic example of the maintenance savings for EPCA in 

the year 2000. The Baseline annual maintenance software cost is computed to be 

$24.8B; the three sources of software technology savings reduce this to $19.IB, for a 

total savings of $5.7B. 

Table 4: Algebraic Example of Year-2000 Maintenance EPCA 
Savings 

Catego!l: RCF AMC RAMC AMS 

EPCA 

PCA 

PCR 

Total 
AMS 

0.872 = 1 - $24.8B $21.6B = $24.8B $3.2B $24.8B -
(0.16 * 0.8) * 0.872 $21.6B 

0.91 = 1 - (0.65 $21.6B $19.7B = $21.6B $1.9B = $21.6B -
* 0.14) * 0.91 $19.7B, 

0.97 = 1 - (0.7 $19.7B $19.1B = $19.7B $0.6B = $19.7B -
* 0.05) * 0.97 $19.1B 

$5.7B 

Notes: AMS = annual maintenance savings. RAMC = residual annual 
maintenance cost AMC = annual maintenance software cost. RCF = residual 
cost fraction, computed as 1 - (FT x FS) for each component of savings. 
AMS = AMC - RAMC. RAMC = AMC x RCF. 

2.4 Calculating ROI and NPV 

To achieve the software development and maintenance cost savings discussed 

above, a substantial investment by the DoD would be required. To assess the potential 

worth of such investments, two financial measures of merit are computed. One 

measure is the ROI. The other measure is NPV. Both measures are calculated from 



www.manaraa.com

9 

constant dollars and account for time value of money by "discounting" the benefits (in 

this case the DoD cost savings) and the costs (i.e., the DoD investment)} 

The formula used in the NPV computation can be shown as: 

NPV 

where 

S t the cost savings for year t. 

C t the dollar value of the investment in year t. 

d the discount rate. 

m the number of years over which the calculations are made. 

In this case, m = 16, and t = 0 corresponds to the year 1992. 

To be consistent with OMB guidelines [OMB72], we assume the discount rate 

to be 10%. The resulting NPV figure is the present value (or worth today) of the 

stream of savings derived from the stream of investments made over the period of this 

analysis. 

The ROI computation also is closely related to the NPV figure. The ROI 

measure is the ratio of the discounted savings to the discounted costs. Algebraically 

this can be shown as: 

ROI= 

3Constant dollars are used so that, after adjusting for inflation, a dollar in the future has 
the same purchasing power as a dollar in the present. Discounted dollars are used so 
that, after discounting, a future dollar has the same value to us now as does a dollar in 
the present. 



www.manaraa.com

10 

where the variables are defmed as above. 

The ROI figure used in this analysis is interpreted as the return for a dollar of 

invesbnent when adjusted for price-level changes and the time value of money. For 

example, if the ROI is computed to be 6, then this figure suggests that for every 

constant, time-discounted dollar invested by the government, 6 constant, time

discounted dollars in savings will be returned. 

3 • Inputs to the Return on Investment Analysis 

This section presents the input estimates used in the ROI analysis and the 

rationales for the numerical values estimated. As the ROI model is automated with 

adjustable parameters, the effect of alternative estimates can readily be calculated. The 

input estimates discussed below are: 

1. Reuse (EPCA) inputs. 

2. Working-smarter (PCA) inputs. 

3. Working-faster (PCR) inputs. 

4. DoD Baseline software costs. 

5. Current and Achievable software technology invesbnent levels. 

3.1 Reuse (End Product Cost Avoidance) Inputs 

The reuse fraction of time FT (EPCA) represents the fraction of DoD software 

reused across all DoD software development or maintenance activities that would 

otherwise have involved developing or modifying code at the Ada or COBOL level, or 

below (e.g., assembly code). As discussed in [BOEHM81] and elsewhere, there are 

various levels of-reuse of code, specifications, and other software artifacts that lead to 

different levels of savings. For this analysis, FT is defined to cover only situations 

where essentially all code in a module is reused, or where coding is avoided by using 

very high level languages (VHLLs) or application generators. 

For module reuse, extensive measured experience in the NASA Software 

Engineering Laboratory has indicated that the average savings fraction FS (EPCA) is 



www.manaraa.com

11 

o.S [BASILISl, SEIDS9]. Savings from VHLLs or application generators have 

typically varied from 0.5 to 0.9, depending primarily on the maturity of the 

technology. 

Development. Early gains will come primarily from use of commercial 

off-the-shelf (COTS) software, particularly in the Corporate Information Management 

(CIM) area. In the mid-90s, module reuse supported by process improvements and 

repositories (e.g., STARS, RAPID) will boost reuse. In the late 90s, major gains will 

begin from investments in DoD DSSAs and early module-composition 

megaprogramming technology. At this point, gains from the reduced-effort Current 

Program begin to tail off, while gains from the Achievable Program are estimated to 

increase. These comparative trends are estimated to continue through about 2OO3-200S, 

as the additional megaprogramming technology in the Achievable Program matures. 

Some factors, particularly cultural inertia and the rapid technical change in underlying 

computer architectures will serve as retardants to progress toward complete, reuse-based 

software development 

The resulting estimated development EPCA time series are as follows: 

Table 5: Estimated Development EPCA Time Series 

Current 
1992 l22i .!22§. .!22! Pr~ram 1QQQ. ~ 1QQi ~ ~ 

FT(EPCA) .005 .02 .05 .OS .12 .15 .18 .20 .22 

FS (EPCA) .70 .75 .78 .80 .80 .80 .80 .80 .80 

Achievable 
1992 1994 1996 .!22! 2000 Program 2002 2004 2006 2008 

FT(EPCA) .005 .02 .06 .12 .20 .30 .40 .47 .52 

FS (EPCA) .70 .75 .78 .80 .82 .84 .86 .87 .88 

Maintenance. Maintenance reuse savings will come from two primary 

sources: 



www.manaraa.com

12 

Use of COTS software: the net savings will be the difference between the 

amount of non-COTS modification that would otherwise have been 

needed, and the COTS maintenance fees. 

Modification avoidance via megaprogramming technology: initially Ada 

generics and similar capabilities, and eventually maintenance via module 

replacement based on DSSA and module-composition capabilities, plus 

life-cycle gains from VHLLs and application generators. These 

modularity-based savings come both from reengineering existing software 

and introduction of newly developed module-based software into the 

downstream maintenance inventory. 

Estimated gains in the early 90s come primarily from replacement of DoD

unique software inventory by COTS, particularly in the CIM area. As in the 

development phase, estimated maintenance gains in the late 90s and 2000s become 

larger for the Achievable Program than for the Current Program, because of the 

stronger DSSA, VHLL, application generator, and module composition capabilities 

made available to DoD via the Achievable Program. 

The resulting estimated maintenance EPCA time series are as follows: 

Table 6: Estimated Maintenance EPCA Time Series 

Current 
~ 1994 1996 .!22§. Pro![am 2000 2002 2004 1QQ2. 2008 

Fr (EPCA) .02 .061 .085 .12 .16 .20 .22 .24 .26 

FS (EPCA) .70 .75 .78 .80 .80 .80 .80 .80 .80 

Achievable 
1992 1994 1996 1998 Pro![am 2000 2002 2004 2006 2008 

Fr (EPCA) .02 .071 .12 .18 .25 .32 .40 .48 .56 

FS (EPCA) .70 .75 .78 .80 .81 .82 .83 .84 .85 

3.2 Working-Smarter (Process Cost Avoidance) Inputs 

A quantitative understanding of the distribution of cost across the various 

activities involved in the software process is crucial to estimating process cost savings, 



www.manaraa.com

13 

both for process cost avoidance (PeA) and process cost reduction (PCR). The analysis 

below is based on a value-chain analysis [pORTER80] of typical process cost 

distributions, based on a sample of 40 DoD software projects [BOEHM88]. The 

potential effects of process and tool improvements on each of the canonical software 

development and maintenance activities (requirements analysis, prototyping, design, 

etc.) are estimated below, based on their initial value-chain cost distributions. 

Table 7 shows the results of the analysis for software development. The first 

column shows the current cost distribution across development activities: 4% of 

current costs (assuming an overall system design as starting point) go to software 

requirements analysis, while 15% goes to coding and related activities such as unit test. 

Columns two and three show the potential effects of working-smarter process 

improvements. The effort devoted to requirements analysis is increased from 4% to 

6%, while the effort devoted to coding activities is decreased from 15% to 7% (reduced 

rework caused by better requirements and design, reduced project turbulence because of 

better, pre-verified interface definitions, and reduced make-work such as full-scale 

critical design review). 

Columns four and five show the potential effects of tools and environmental 

support to make the remaining essential work go faster. For requirements analysis, 

better modeling and specification tools could reduce the 6% figure to 5%. For coding

related activities, better tools for automating portions of the coding and unit testing 

process, and better support of group-coordination and change-effect processing could 

reduce the 7% figure to 5%. The final column shows the resulting normalized cost 

percentages: both requirements analysis and code would consume 11 % of the reduced 

total cost. 

The total potential working-smarter (or PCA) savings is thus 37% of the 

original total. This figure is consistent with [JONES86], which has rework costs 

increasing to 50% for very large projects. The subsequent potential working-faster (or 

PCR) savings is 30% of the post-PCA costs or 19% of the original total. This figure 

is conservative with respect to the 33%-50% productivity gains for tool and 



www.manaraa.com

14 

environment support in software cost estimation models such as the Constructive Cost 

Model (COCOMO) and Ada COCOMO [BOEHM81, BOEHM89]. 

Table 8 shows the counterpart cost breakdown and potential working-smarter 

(PCA) and working-faster (PCR) savings for maintenance. Overall potential PCA 

savings are 39%; PCR potential savings are 31 % of the remainder, or 19% of the 

original total. 

Table 7: Potential Software Development Savings - Value 
Chain Analysis 

Activity Current Work- Remainder Work- Overall Revised 

Rqts. 
Analysis 
Prototyping 
Rqts. Trace 
Design 

Code 
Integration 
& Test 
Documen
tation 
Config. 
Mgmt. 
Managemen 
t 

Other* 

Total 

Cost % Smarter Faster Remainder Cost% 

4 

3 
4 

12 
15 
14 

15 

5 

16 

12 

100 

Savings Savings 

+2 

+2 
-1 
-1 
-8 
-8 

-8 

-1 

-8 

-6 

-37 

6 -1 

5 -1 
3 -1 

11 -3 
7 -2 
6 -1 

7 -3 

4 -2 

8 -2 

6 -3 

63 -19 
(30% of 
63) 

5 

4 
2 
8 
5 
5 

4 

2 

6 

3 

44 

11 

9 
4 

18 
11 
11 

9 

4 

14 

7 

100 

* "Other" includes project communications, quality assurance functions, training 
functions, security management, simulation. 

Development Process Cost A voidance. The fraction of time process 

improvements are used, FT (PCA), is estimated as the fraction of the DoD software 

performer base that has improved itself at least one level on the five-level Software 

Engineering Institute (SEI) process maturity assessment scale [HUMPHREY89]. 



www.manaraa.com

15 

Most contractors and internal DoD software organizations are still at Level 1. The 

prospect of using maturity level as a contractor source selection criterion, or recent 

directives for internal CIM organizations to use SEI assessments [STRASSMANN91], 

will cause relatively rapid early increases in Ff (PCA). However, cultural inertia will 

still leave some DoD software projects at Levell in the year 2008. 

Table 8: Potential Software Maintenance Savings - Value Chain 
Analysis 

Activity Current Work- Remainder Work- Overall Revised 
Cost % Smarter Faster Remainder Cost% 

Savings Savings 

Rqts. 6 0 6 -1 5 12 
Analysis 
Proto- 0 +2 2 0 2 5 
typing 
Rqts. Trace 2 +1 3 -1 2 5 
Design 11 -3 8 -2 6 14 
Code 14 -7 7 -2 5 12 
Integration 20 -10 10 -3 7 17 
& Test 
Documen- 16 -9 7 -3 4 9 
tation 
Config. 4 0 4 -2 2 5 
Mgmt. 
Manage- 15 -7 8 -2 6 14 
ment 

Other * 12 -6 6 -3 3 7 

Total 100 -39 61 -19 42 100 
(31% of 
61) 

* "Other" includes project communications, quality assurance functions, training 
functions, security management, simulation. 

The fractional savings FS (PCA) from working smarter is estimated as a 

function of the average number of process maturity levels that organizations developing 

DoD software have progressed. Improving one level of maturity is estimated to 

produce an 0.14 savings fraction; two levels, 0.24; three levels, 0.32; and four levels, 



www.manaraa.com

16 

0.37. The SEI is collecting data to provide better quantitative information on the 

effects of process maturity on software costs. 

The resulting estimated development PCA time series are given in Table 9. 

The Ff series are the same for the Current and Achievable Programs, as process 

maturity adoptions are primarily a function of DoD management initiatives. The FS 

are estimated to be considerably higher in the out-years for the Achievable Program, 

because of significantly better technology support of tailorable process models, process 

programming, prototyping, and knowledge-based risk management aids. 

Table 9: Estimated Development peA Time Series 

Current 
.!221 1994 1996 .!22! 2QQQ. 2002 1QQi 1QQ2. ~ Pro8!:am 

Ff (PCA) .05 .25 .50 .65 .75 .80 .85 .89 .92 

FS (PCA) .12 .13 .14 .15 .16 .18 .20 .22 .24 

Achievable 
1992 1994 1996 1998 2000 2002 2004 2006 2008 Pro8!:am 

Ff (PCA) .05 .25 .50 .65 .75 .80 .85 .89 .92 

FS (PCA) .12 .14 .16 .20 .24 .27 .30 .32 .34 

Maintenance. Estimated FT adoption rates for maintenance process 

improvements show significant increases similar to those for development. The 

maintenance rates are somewhat lower, since maintenance processes are more difficult 

to decouple from their large inventories of existing software. The estimated FS 

rework-avoidance savings are lower than development savings for similar reasons, but 

this is compensated for by technology contributions to process cost avoidance. 

Software understanding and reengineering technology will avoid much of the cost in 

software maintenance currently devoted to the process of understanding poorly 

structured and poorly explained software. This cost is estimated to be as high as 47% 

of the maintenance effort [PARIKH83]. Improving one level of process maturity is 

estimated to produce a combined rework-avoidance and understanding-improvement 

savings fraction of 0.10; two levels, 0.18; three levels, 0.26, and four levels, 0.34. 



www.manaraa.com

17 

As with development PCA, the FS estimates for the Achievable Program are 

considerably higher in the out-years than for the Current Program, because of 

significantly better technology support for software understanding and reengineering. 

The resulting maintenance PCA time series are given below. 

Table 10: Estimated Maintenance PCA Time Series 

Current 
~ .!22! .!222. .!22§. lQQQ. 2002 2QQi 1QQ2. 2008 Program 

Ff (PeA) .05 .20 .40 .55 .65 .70 .75 .80 .84 

FS (PCA) .10 .10 .11 .12 .14 .16 .17 .18 .19 

Achievable 
1992 .!22! 1996 1998 2000 2002 2004 2006 2008 Program 

FT (PeA) .05 .20 .40 .55 .65 .70 .75 .80 .84 

FS (PCA) .10 .11 .13 .16 .20 .25 .30 .35 .40 

3.3 Working-Faster (Process Cost Reduction) Inputs 

The fraction of time PCR tools and environments are used FT (PCR) is 

estimated as the fraction of the DoD software performer base that has improved itself at 

least one level on an ascending computer-aided software engineering (CASE) maturity 

hierarchy for tools and environment support. The maintenance PCR savings are also 

enhanced by re-engineering technology improvements and by better-structured software 

entering the maintenance inventory. The CASE maturity levels and their 

corresponding savings fractions FS (PCR) for development and maintenance are given 

in Table 11. 

Table 11: Levels of Tool and Environment Support 

CASE Maturity Level 

1. Minimal 
2. 1991 CASE Tools 
3. Integrated CASE Environment 
4. Integrated, Fully-Populated CASE Environment 
5. Proactive CASE Environment 

Development 
FS (PCR) 

0.00 
0.07 
0.14 
0.23 
0.30 

Maintenance 
FS (PCR) 

0.00 
0.06 
0.14 
0.24 
0.32 



www.manaraa.com

18 

The savings fractions at the lower levels are low because CASE tools are 

frequently purchased and installed without the associated tailoring, training, and process 

integration needed to make them payoff. In some situations, indiscriminate 

purchasing of CASE tools has actually reduced productivity. 

Development and Maintenance. The resulting development and 

maintenance PCR time series are given in Tables 12 and 13. The comparisons 

between the Current Program and Achievable Program are similar to those for PCA; 

the estimated Fr (PeR) adoption rates are the same, while the estimated FS (PCR) 

savings fractions are considerably higher in the out-years because of the significantly 

higher levels of DoD-responsive advanced CASE technology. 

The FS (PeR) are net savings, which have reduced the gross savings by 0.05, 

reflecting the typical 5% added to the cost of doing business for the purchase, 

amortization, and maintenance fees for CASE tools and workstations. Thus, the 1992 

development savings fraction is not 0.07, as might be expected from Table 11, but 

rather 0.02. 

Table 12: Estimated Development PCR Time Series 

Current 
~ .!22i .!222. 1998 2QQQ. 2002 2004 2006 2008 Pro![am 

Fr (PCR) .15 .35 .50 .65 .75 .80 .85 .89 .92 

FS (PCR) .02 .04 .05 .06 .07 .08 .09 .10 .11 
Achievable 

~ 1994 1996 1998 2000 2002 2004 2006 2008 Pro![am 
Fr (PCR) .15 .35 .50 .65 .75 .80 .85 .89 .92 

FS (PCR) .02 .04 .07 .11 .15 .18 .21 .23 .25 

3.4 DoD Baseline Software Costs 

The DoD baseline software cost profile from which savings are calculated is 

that discussed in Section 2.1, in which no significant DoD efforts are undertaken to 

improve DoD software technology. Past experience indicates that one would expect a 



www.manaraa.com

19 

4% per year general improvement in software productivity to apply to the DoD. The 

Baseline scenario limits DoD software demand growth to 4%. 

Table 13: Estimated Maintenance PCR Time Series 

Current 
.!221 .!22i 1996 .!22! Program 2000 ~ 2004 2006 2008 

Ff (PCR) .10 .30 .45 .60 .70 .75 .80 .84 .87 

FS (PCR) .01 .02 .03 .04 .05 .06 .07 .08 .09 

Achievable 
1992 1994 1996 1998 2000 2002 2004 2006 2008 Program 

Ff (peR) .10 .30 .45 .60 .70 .75 .80 .84 .87 

FS (PCR) .01 .03 .06 .09 .13 .17 .21 .24 .27 

As discussed in Section 2.1, it was assumed that the DoD will spend $24B in 

1992 for software and that this $24B can be separated into development (30%) and 

maintenance (70%). A 5% inflation rate is also assumed, yielding a net growth in 

DoD software expenditures of 5% per year compounded over the period of the analysis. 

The results are shown below in Table 14. 

Table 14: Baseline Estimates of DoD Software Expenditures 
(Billions of Then-Year Dollars) 

$B .l.222 1m .l22Q .l22a 2QOO 2QQ2 2QM 2006 ~ 
Total DoD $24. 26.5 29.2 32.2 35.5 39.1 43.1 47.5 52.4 
Software 0 

Mainte- 16.8 18.5 20.4 22.5 24.8 27.4 30.2 33.3 36.7 
nance 

Develop- 7.2 7.9 8.8 9.6 10.6 11.7 12.9 14.3 15.7 
ment 

Note: In this table, as with all tables that report spreadsheet results, the columns do not 
always add or subtract exactly because of rounding. 

To account for the price-level changes over time, the estimates of savings and 

investments have been deflated to constant 1992 dollars. Hereafter, the results of the 

analyses will be presented in both then-year and constant dollars. 



www.manaraa.com

20 

3.5 Investment Levels for Current and Achievable Software 
Technology Programs 

As described in the introduction to this section, the Current scenario assumes 

that the $219M1year level of funding provided in FY1996 for core software 

technologies will be continued over the entire time horizon. 

The Achievable funding scenario is associated with an enhanced software 

technology program described in the SWTS. In then-year dollars, it involves a 

significant boost (to $56SM) in DoD spending per year for software technologies for 

the time period 1992 through 200S. Using a 5% deflation rate, the $56SM in 200S 

dollars translates to $260M in constant 1992 dollars. The funding profiles are shown 

in Table 15. 

4 • Estimated Savings and ROIs 

Figure 1 and Table 16 present the Baseline scenario results. These results 

suggest that total DoD spending for software will reach almost $52B by the year 200S. 

The maintenance fraction of the $52B total is estimated to be approximately $37B by 

200S. The estimated expenditure for software development is $16B by the year 200S. 

In light of the planned decline in the DoD budget over the same period of time, if the 

software expenditures follow the pattern depicted by Figure 1, software will soon 

account for nearly 20% of the total DoD budget. Such out-year estimates may appear 

high, but some estimates of future aircraft and ship development costs have allocated 

30% of the costs to software. 

Figure 2 and Table 17 show the differences between the Baseline (no SWTS 

expenditures), the Current Program, and the Achievable Program. The incremental 

savings are the difference between the Current and Achievable scenarios. These results 

indicate that the Achievable funding scenario generates a stream of savings that are 

relatively small in the ftrst several years but increase rapidly in the out years. For 

example, we estimate the Achievable Program scenario generates savings of 

approximately $3SB then-year dollars or $17.5B constant 1992 dollars by the year 

200S. 



www.manaraa.com

T
ab

le
 1

5:
 

In
ve

st
m

en
t 

P
ro

fi
le

s 
fo

r 
C

ur
re

nt
 a

nd
 A

ch
ie

va
bl

e 
SW

T
S 

P
ro

gr
am

s 

Th
en

-Y
 !:l

ar 
D

oH
ill

] 
!$

M
l 

22
 

2.3
. 

.21
 
~
 

.2.G
 

21
 

2a
 

22
 

00
 

ill
. 

Q
2 

00
. 

!M
 

.Q
l 

Q6
 

il
l 

OR
 

C
ur

re
nt

 
19

4 
19

4 
19

7 
19

5 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
19

2 
A

ch
.A

dd
-o

n 
0 

58
 

11
0 

16
4 

21
2 

21
8 

23
0 

24
3 

25
6 

26
9 

28
3 

29
8 

31
2 

32
7 

34
3 

35
9 

37
6 

A
da

 A
dd

-o
n 

30
 

20
 

10
 

A
ch

. T
ot

al
 

19
4 

28
2 

32
7 

36
9 

40
4 

41
0 

42
2 

43
5 

44
8 

46
1 

47
5 

49
0 

50
4 

51
9 

53
5 

55
1 

56
8 

C
Q

ns
ta

nt
 1

29
2 

D
ol

la
rs

 
!$

M
l 

22
 

23
. 

24
 

2.
l 

26
 

21
 

2.8
. 

.22
 

.00
 

ill
. 

Q2
 

O
l 

!H
 

QS
 

.Q
6 

il
l 

OR
 

C
ur

re
nt

 
19

4 
18

5 
17

9 
16

8 
15

8 
15

0 
14

3 
13

6 
13

0 
12

4 
11

8 
11

2 
10

7 
10

2 
97

 
92

 
88

 
A

ch
. A

dd
-o

n 
0 

55
 

10
0 

14
2 

17
4 

17
1 

17
2 

17
3 

17
3 

17
3 

17
4 

17
4 

17
4 

17
3 

17
3 

17
3 

17
2 

A
da

 A
dd

-o
n 

29
 

18
 

9 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

0 
0 

A
ch

. T
ot

al
 

19
4 

26
9 

29
7 

31
9 

33
2 

32
1 

31
5 

30
9 

30
3 

29
7 

29
2 

28
6 

28
1 

27
5 

27
0 

26
5 

26
0 

I\
)
 

-
L

 



www.manaraa.com

22 

60 

i 50 

~ 
i:. 
~ 40 
t. 
'0 
8 30 
! 

I 
en 20 
o o o 

~ 10 l_------------------~De:V;eIOpment 
~ 

O;-~--~~~~~~~~~~_r~~~_r_,--~~ 

1992 1994 1996 1998 2000 
Years 

2002 2004 2006 2008 

Figure 1: Then-Year Baseline Software Expenditures by Software Life 
Cycle 

Table 16: Baseline Software Expenditures by Software Life Cycle 

Then-Year 
Dollars ($B) 

l222 ~ l22.6 l2.2.a 20m 2002 ~ 2002 2QQB. 

Total DoD 24.0 26.5 29.2 32.2 35.5 39.1 43.1 47.5 52.4 
Software 

Maintenance 16.8 18.5 20.4 22.5 24.8 27.4 30.2 33.3 36.7 

Development 7.2 7.9 8.8 9.6 10.6 11.7 12.9 14.3 15.7 

Constant 
1992 Dollars 
($B) 

l222 ~ l22.6 l2.2.a 2QOO 2QQ2 ~ 2002 2OOB. 
Total DoD 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 24.0 
Software 

Maintenance 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 16.8 

Development 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

Note: In this table, as with all tables that report spreadsheet results, the columns do not 
always add or subtract exactly because of rounding. 



www.manaraa.com

60 

CD 
~ 50 
t;; 

~ 
1! 40 
!::. 
~ 
o 30 

i 
C/) 20 
~ o 
iii 
E 10 
~ 

Baseline 

Achievable 

O;-~r--r--r--r--~~--~-'--~~r--r--r--r--~~--' 

23 

1992 1994 1996 1998 2000 
Years 

2002 2004 2006 2008 

Figure 2: Then-Year Total Software Expenditures from Baseline, 
Current, 

and Achievable Program 

Table 17: Software Expenditure Savings from Current 
and Achievable Programs 

Then-Year Dollars ($B) 

.122. .l22 .122. .l22. 200 200 200 200 200 
2 ~ 1i a Q 2 ~ 1i a 

Current Scenario Savings 0.4 1.8 3.6 5.8 8.5 11. 14. 17. 20. 
3 1 3 8 

Achievable Scenario Savings 0.4 2.0 4.7 8.5 13. 18. 24. 31. 38. 
3 7 9 3 1 

Incremental Savings 0.0 0.2 1.1 2.7 4.9 7.3 10. 14. 17. 
8 0 3 

Constant 1992 Dollars ($B) 

1.2.2. .l.22 l22. .l.22 2QQ 2QQ 2QQ 200 2QQ 
2 ~ Q a Q 2 ~ Q ~ 

Current Scenario Savings 0.4 1.6 2.9 4.3 5.7 7.0 7.9 8.7 9.5 
Achievable Scenario Savings 0.4 1.8 3.9 6.3 9.0 11. 13. 15. 17. 

5 9 8 5 
Incremental Savings 0.0 0.2 0.9 2.0 3.3 4.5 6.0 7.1 7.9 

Note: In this table, as with all tables that report spreadsheet results, the columns do not 
always add or subtract exactly because of rounding. 



www.manaraa.com

24 

Figure 3 and Table 18 compare the Baseline scenario costs and the Achievable 

scenario costs for the two main stages (development and maintenance) in the software 

life cycle. The relative proportion of development and maintenance costs does not 

change significantly. 

Figure 4 and Table 19 present the difference between software expenditure 

under the Baseline and the Achievable scenarios by source of these savings. Recall the 

sequential nature of the calculations. Savings are ftrst generated by reuse (EPeA), then 

by process improvements (PeA), and ftnally by tools and environments (PCR). The 

largest savings are attributable to reuse (EPCA). For example, in the year 2000 

approximately $7B of the $13B then-year dollars saved by the software initiative is 

caused by reuse. The PCA (process) source generates about $4B and PeR (tools) 

generates about $2B in savings in 2000. 

60 

CD 
..,. 50 
iii 
~ c 

~ 40 

1;; 

8 30 

j 
~ 20 
o 
o o 

CiI 
E 10 

~ 

Baseline - (B) 
:: mm;; mmmmmc:::w~ Achievable ... (A) 

O~~--r-~~--r-~~-'r-~-r-'--r--r~--r-~ 

1992 1994 1996 1998 2000 2002 2004 2006 2008 

Years 

Total - B 

Maintenance - B 

Development - B 

Total-A 

Maintenance· A 

Development. A 

Figure 3: Then-Year, Life-Cycle Baseline and Achievable 
Software Expenditures 



www.manaraa.com

Table 18: Baseline Versus Achievable Sortware Expenditure 
Savings by Life Cycle 

Then-Year 
Dollars ($B) 

1222 ~ .l226 122& 2QOO 2002 2OO!l 2006 
Maintenance 0.3 1.5 3.3 5.9 9.2 12.8 17.2 21.8 
Savings 
Development 0.1 0.5 1.3 2.6 4.2 5.8 7.7 9.5 
Savings 
Total 0.4 2.0 4.7 8.5 13.3 18.7 24.9 31.3 
Savings 

Constant 
1992 Dollars 
($B) 

l222 ~ ~ 122& 2QOO 2002 2!KM 2006 
Maintenance 0.3 1.4 2.8 4.4 6.2 7.9 9.6 11.0 
Savings 
Development 0.1 0.5 1.1 1.9 2.8 3.6 4.3 4.8 
Savings 
Total 0.4 1.8 3.9 6.3 9.0 11.5 13.9 15.8 
Savings 

25 

2llQ& 
26.9 

11.2 

38.1 

2llQ& 
12.3 

5.1 

17.5 

Note: In this table, as with all tables that report spreadsheet results, the columns do not 
always add or subtract exactly because of rounding. 

4.1 NPV and ROI under Current and Achievable Scenarios 

The ROI and NPV figures for the Current scenario are presented in Table 20. 

We can see that as early as 1994 the invesbnent in software technology is paying back 

more than $5 for every $1 invested. By the final year the cumulative ROI indicates 

that the ratio of 27: 1 is possible. The NPV figures indicate that the value today of the 

stream of savings generated by the current set of investments is approximately $34B in 

constant-1992 discounted dollars. 



www.manaraa.com

26 

60 

in 
~50 

Iii 
~ c 
! 40 
t:. 
"8 
°30 

I 
U) 20 
c 
8 
iii 
i§l 10 
~ 

Baseline Total 

Work Avoidance 
(Reuse) 

~,,---- .. ----.,--~.--
lOI!I!!ll:;;;;;~-"'-"""m .. ",: ... -_ .-___ + Working Smarter 

---_~ - __ ~ocess) -----...... -----.~ 
.................... ~---
+ Working Faster 

(Tools) . 

O~--r--r--~-T--~~~~--r--r--~-T--~~~~--r--' 

1992 1994 1996 1998 2000 
Years 

2002 2004 2006 

Figure 4: Then-Year Baseline Versus Achievable Software 
Expenditure by Source of Savings 

Table 19: Baseline Versus Achievable Software Savings by 
Source of Savings 

Then-Year 
Dollars ($B) 

~ 125M. .l22fi .l22B. 2QOO 2002 200i 2QQ6 
EPCA Savings 0.3 1.1 2.3 4.2 6.8 10.1 14.5 19.2 
PCA Savings 0.1 0.7 1.6 2.8 4.2 5.4 6.7 8.0 
PCR Savings 0.0 0.3 0.7 1.5 2.4 3.1 3.8 4.1 

Constant 1992 
Dollars ($B) 

~ 125M. l222 .l22B. 2.000 2002 200i 2QQ2 
EPCA Savings 0.3 1.0 1.9 3.1 4.6 6.2 8.1 9.7 
PCA Savings 0.1 0.6 1.3 2.1 2.8 3.3 3.7 4.0 
PCR Savings 0.0 0.2 0.6 1.1 1.6 1.9 2.1 2.1 

2008 

200& 
24.6 

9.1 
4.3 

200& 
11.3 
4.2 
2.0 

The ROI and NPV figures for the Achievable funding scenario are presented in 

Table 21. The cumulative ROI indicates that for every $1 dollar invested, $22 dollars 

are returned. The NPV of this scenario is about $54B. 



www.manaraa.com

27 

The ROI for the Achievable Program is smaller then the Current Program 

ROI. However, the Achievable Program generates significantly larger NPV over the 

time period analyzed. The NPV and ROI results for both scenarios are summarized in 

Table 22. Also, two columns are included to show the difference between the NPV in 

the two scenarios and the ROI of the incremental investment. These columns show the 

incremental effect of the move from the Current to the Achievable Program. The NPV 

column indicates that the additional benefit to the Achievable Program over the Current 

Program is $19B. The ROI column indicates that the return on DoD investment that 

generates the incremental savings is about 17:1. 

4.2 Excursions and Sensitivity Analysis 

Three excursions from the Current and Achievable scenarios are presented 

below. They are included here to better illuminate some of the underlying assumptions 

that generate the results reported above, and the sensitivity of the results to those 

assumptions. 

The three excursions are the effect on expenditures and savings of a 3% 

increase in the growth rate in software demand, the effect on ROI of large decreases in 

the predicted Fr and FS levels, and the effect of slowing the transfer into use of these 

software technologies. 

Table 20: ROI and NPV For Current Funding Scenario 
(NPV in Millions of Constant·1992 Discounted Dollars) 

Year NPV ROI 

1992 229 2.2 
1994 2,162 5.2 
1996 5,626 8.5 
1998 10,126 12.0 
2000 15,241 15.5 
2002 20,513 18.9 
2004 25,547 21.9 
2006 30,196 24.7 
2008 34,417 27.1 

Note: NPV reported in 
millions of 1992 dollars. 



www.manaraa.com

28 

Table 21: ROI and NPV For Achievable Funding Scenario 
(NPV in Millions of Constant-1992 Discounted Dollars) 

Year NPV ROI 

1992 229 2.2 
1994 2,247 4.3 
1996 6,528 6.7 
1998 12,873 9.4 
2000 20,721 12.3 
2002 29,254 15.2 
2004 37,952 17.8 
2006 46,252 20.2 
2008 53,920 22.3 

Note: NPV reported in 
millions of 1992 dollars. 

4.2.1 Effects of Additional Demand Growth on Software 
Expenditure 

The results presented here are affected by the assumptions made about the 

effects of SWTS on software spending. These results are also influenced by the 

assumptions made about the growth in software demand. This section shows one 

excursion from the Baseline-Current-Achievable Programs discussed previously. 

The excursion shown is to assume in the Baseline case an 8% growth in then

year dollar expenditure on software. Assuming that inflation remains at 5%, this 

results in a 3% annual growth in the overall work force necessary to develop and 

maintain DoD software. 

Figure 5 and Table 23 show the results of this excursion. Figure 5 can be 

compared with Figure 2. A major difference between the two figures is that the 

Current Program in Figure 5 shows pronounced cost growth, while in Figure 2 the 

growth is just beginning in the later years. Only the Achievable Program is still able 

to reduce then-year spending on software. 



www.manaraa.com

29 

Table 22: ROI and NPV Comparisons between Current Funding and 
Achievable Funding Scenarios, in Constant-1992 Discounted Dollars 

4.2.2 

(SM) 

Current Achievable Incremental Effect 

Year NPV ROI NetPV ROI NetPV ROI 

1992 229 2.2 229 2.2 0 
1994 2,162 5.2 2,247 4.3 86 1.5 
1996 5,626 8.5 6,528 6.7 901 3.2 
1998 10,126 12.0 12,873 9.4 2,747 5.5 
2000 15,241 15.5 20,721 12.3 5,480 8.0 
2002 20,513 18.9 29,254 15.2 8,740 10.5 
2004 25,547 21.9 37,952 17.8 12,385 13.0 
2006 30,196 24.7 46,252 20.2 16,056 15.2 
2008 34,417 27.1 53,920 22.3 19,503 17.1 

Note: NPV reported in millions of 1992 dollars. Incremental NPVs may 
not be the difference between Current and Achievable NPV because of 
rounding. 

ROI Sensitivity to Decreased Estimates of FT and FS 

This section shows the effects on ROI of significant decreases in the Ff and 

FS savings parameters in the model. The conclusion of this analysis is that, even if 

the Ff and FS estimates that generate the results shown in the Current and Achievable 

scenarios reported above are overestimated by a factor of two, and that the improvement 

between Current and Achievable programs is halved, both the Current and Achievable 

SWTS investment programs are still a good buy. 

This analysis starts with the Current and Achievable scenarios reported above. 

Four excursions are calculated. The first excursion hypothesizes that all the Ff and FS 

improvements between the Current and the Achievable case are too large, and deals 

with this by halving the improvement between Current and Achievable Programs. For 

example, Table 10 shows the maintenance FS for PCA of 0.14 and 0.20 for the 

Current and Achievable programs, respectively. This excursion reduces the 0.20 to 

0.17. 



www.manaraa.com

30 

90 

a80 ... 
as 
.:. 70 
C: 
(I) 

~ 60 

850 
(I) j 40 

~ 30 
o o 
020 
"iii 
~ 
c: 10 
~ 

Achievable 

O~~~~--r--r--~~--~~--~~--~~~-r--~~-' 

1992 1996 2000 
Years 

2004 

Figure 5: Then-Year Effects of Additional Demand Growth 

2008 

The second excursion starts with the Current and Achievable Programs, and 

assumes that all Ff for both programs are too high by a factor of two. From Table 5, 

the Development EPCA Ff for the Current and Achievable Programs for the year 2000 

are 0.12 and 0.20, respectively. In this excursion, they will be reduced to 0.06 and 

0.10. This excursion will be used in Section 4.2.3 in the discussion on technology 

transfer leverage. 



www.manaraa.com

31 

Table 23: Effects of Additional Demand Growth in Then-Year and 
Constant 1992 Dollars (SBillions) 

Then-Year 
Dollars (SB) 

.l222 ~ ~ .l22.& 2QOO 2002 2004 2006 200a 
TotalDoD 24.0 28.0 32.7 38.1 44.4 51.8 60.4 70.5 82.2 
Software 
Current 0.4 1.9 4.0 6.8 10.6 15.0 19.8 25.6 32.7 
Scenario 
Savings 
Achievable 0.4 2.1 5.3 10.1 16.7 24.8 34.9 46.4 59.8 
Scenario 
Savings 
Incremental 0.0 0.3 1.3 3.2 6.1 9.7 15.1 20.8 27.1 
Savings 

Constant 
1992 Dollars 
($B) 

.l222 ~ ~ .l22.& 200Q 2002 2001 2006 200a 
Total DoD 24.0 25.5 27.0 28.7 30.4 32.3 34.2 36.3 38.5 
Software 
Current 0.4 1.7 3.3 5.1 7.2 9.3 11.2 13.2 15.3 
Scenario 
Savings 
Achievable 0.4 1.9 4.3 7.6 11.4 15.4 19.8 23.9 28.0 
Scenario 
Savings 
Incremental 0.0 0.2 1.0 2.4 4.2 6.1 8.6 10.7 12.7 
Savings 

Note: In this table, as with all tables that report spreadsheet results, the columns do not 
always add or subtract exactly because of rounding. 

The third excursion starts again with the Current and Achievable Programs, 

and assumes that all FS and FT for both programs are too high by a factor of two. For 

example, from Table 10, the maintenance PCA FT and FS are 0.65 and 0.14 for the 

Current Program, and 0.65 and 0.20 for the Achievable Program. In this excursion, 

they will be reduced to 0.325 and 0.07, and 0.325 and 0.10, respectively. This results 

in the savings proportions (FT * FS) being reduced by a factor of four. The fourth and 

final excursion sequentially applies the reductions for the fIrst and third excursion. 

~~~~~W~~~~are~~~~~~ 

0.085, respectively. 



www.manaraa.com

32 

The ROI generated by these excursions are shown in Table 24. The Current, 

Achievable, and Incremental ROI in the fIrSt line are reproduced from Table 22. The 

four excursions are identified numerically. The Incremental ROI for excursion one is 

calculated from the original Current Program and the excursion one Achievable 

Program, and the incremental ROI for excursion four is based on the Current ROI from 

excursion three and the Achievable ROI from excursion four. 

TheseROI show that the SWTS expenditures are cost-effective even if the FS 

and FT estimates are high by a factor of two; and that the Achievable Program is cost

effective even in the face of an additional halving of the FS and FT improvements from 

the Current Program. That is, the worst case Current Program ROI is still 7.5, the 

worst case Achievable ROI is 5.1, and the incremental ROI between these two is 2.5. 

As these ROI calculations are based on discounted dollars, any ROI greater than 1 is 

cost-effective. 

Table 24: ROJ for FT and FS Decreases 

Current Achievable Incremental 
Case Program Program ROI 

ROI ROI 

Current and Achievable Program 27.1 22.3 17.1 

1. Reduce Achievable FT and FS 
Improvements by 50% ofDif- 27.1 18.5 9.0 
ference from Current Program 

2. Reduce FT Values by 50% 14.2 12.3 10.2 

3. Reduce FT and FS Values by 7.5 6.4 5.3 
50% 

4. Apply Both 1 and 3 above 7.5 5.1 2.5 

Note: ROI is cumulative savings over cumulative DoD investment, both in 
constant, discounted dollars. 

4.2.3 Technology Transfer Leverage 

Changes in the FT coefficients show changes in the rate of adoption of SWTS 

technology. Case 2 in Figure 24 indicates that a 50% reduction in these adoption rates 

corresponds to a roughly 50% reduction in the return on investment in the the Current 



www.manaraa.com

33 

and Achievable Programs. In these cases, the Current ROI decreases from 27.1 to 14.2 

and the Achievable ROI decreases from 22.3 to 12.3. This approximately proportional 

relationship between changes in FT and resulting changes in ROI is characteristic of 

the model. 

This relationship between changes in FT and changes in ROI points out 

a tremendous leverage opportunity for technology transition initiatives to reduce the 

current, typical, 18-year delay [REDWINE85] between the emergence of an enabling 

software technology and its common operational use. If such initiatives can achieve 

even a modest reduction of this delay down to 15 years, the DoD ROI would increase 

roughly by a factor of 20%. 

4.2.4 Meeting the SWTS Factor-of-Two Objective 

Data generated from the ROI analysis can be used to assess whether the SWTS 

could meet its stated objective of reducing DoD software costs by a factor of two by the 

year 2000. Table 25 reproduces data from Tables 16 and 17 for the years 2000, 2002, 

and 2004. The data show the no-investment Baseline, the savings from the Baseline 

that will occur with the investments in the Achievable program, and the DoD software 

costs estimated if the Achievable program investments are undertaken. 

From these data, a cost reduction factor (CRF) can be generated. This factor is 

the ratio of the Baseline costs over the remaining costs once the program is 

implemented. If the CRF is greater than or equal to two, the SWTS investments have 

met their objective. 

With the assumptions in the model, the Achievable Program CRF does 

not exceed two until slightly after FY2002. With less conservative assumptions, for 

example the more aggressive technology transition effort discussed in Section 3.5, the 

factor-of-two cost objective appears reachable by the year 2000 for the Achievable 

Program. It does not appear reachable by the Current Program, although the cost 

reductions are still quite large. 



www.manaraa.com

34 

Table 25: Data on Factor-of-Two Cost Reductions 

Expenditures, Savings, and Cost Reduction Factors by 
Years 

Program 2000 2002 2004 

Baseline Costs $35.5 
$13.3 

$39.1 
$18.7 

$43.1 
$24.9 Achievable Program 

Savings 
Remaining DoD Costs 
Achievable Cost 
Reduction Factor (CRF) 

$22.2 
1.60 

$20.4 
1.92 

$18.2 
2.37 

CurrentProgramCRF 1.31 1.41 1.49 
Notes: Dollars in then-year billions, CRF is a ratio of baseline costs over remaining 
DoD costs. 

5 • Summary and Conclusions 

The major questions posed in Section 1 have the following answers: 

• Can the Current software technology program be justified with respect to 

the no-investment Baseline situation? Yes. The net present value 

generated by the Current Program is $34 billion. The return on 

investment is 27: 1. 

• Can the Achievable Program be justified with respect to the Current 

Program? Yes. The incremental net present value is $19 billion. The 

incremental return on investment is about 17:1. The incremental ROI 

from the Achievable Program is smaller than the ROI of the Current 

Program. This is the result of the Current Program's opportunity to 

work the high-leverage areas first. However, a DoD investment that pays 

$17 for each dollar invested is extremely cost-effective. 

• Can the SWTS meet its objective of reducing software costs by a factor 

of two by the year 2ooo? 

Answer: Only with less conservative assumptions than those used in the 

analysis. Using the conservative assumptions, the Achievable Program 

has an estimated cost reduction factor of 1.60 by 2000 and reaches a factor 



www.manaraa.com

35 

of 2 slightly after the year 2002. However, with moderately less 

conservative but quite responsible assumptions, the objective can be 

reached by the Achievable Program. The corresponding cost reduction 

factor for the CUITent Program is in the 1.3-1.4 range. 

An even stronger case for the Achievable Program is evident, once more 

realistic projections of DoD software demand are used. As seen in Figure 5, with even 

a 3% increase in software demand over the conservative constant-1992-dollar demand 

projection, the Current Program is unable to hold the line on out-year DoD software 

costs, while the Achievable Program continues to reduce out-year DoD software costs. 

Excursions are also presented to show that the Current and Achievable 

Programs are cost-effective even if savings estimates are optimistic. Table 24 

summarizes ROI results that indicate that even if the FT and FS for the CUITent and 

Achievable Programs are over-estimated by a factor of two, the savings still justify the 

SWTS investment. 

Acknowledgements: 

I would like to thank Dr. Thomas Frazier of IDA for a number of useful refmements of 

the model; and Dr. Frazier, Bruce Angier, Elizabeth Bailey, KL. Wilson, and Catherine 

McDonald of IDA for generating and refining the automated version of the model. Dr. 

Jack Kramer of DARPA and Paul Strassman of OSD provided valuable suggestions in 

applying the model to the DoD STARS program and the DoD Corporate Information 

Management Initiative. 

References: 

[AVWK91] 

[BAS1l181] 

[BOEHM81] 

Aviation Week & Space Technology, March 18, 1991, Vol. 
134, No. 11. 

Basili, V.R. and Freburger, K., "Programming 
Measurement and Estimation in the Software Engineering 
Laboratory, " Journal of Systems and Software, February 
1981. 

Boehm, B.W., Software Engineering Economics, Prentice 
Hall, Englewood, NJ, 1981. 



www.manaraa.com

36 

[BOEHM88] 

[BOEHM89] 

[B0EHM91a] 

[B0EHM91b] 

[EIA90] 

[HUMPHREY89] 

[JONES 86] 

[LEVIT AN88] 

[MARTIN83] 

[OMB72] 

[PARIKH83] 

[PORTER80] 

Boehm, B.W. and Papaccio, P., "Understanding and 
Controlling Software Costs," IEEE Transactions on 
Software Engineering, October 1988, pp. 1462-1477. 

Boehm, B.W. and Royce, W.E., "Ada COCOMO," 
Proceedings of the Fourth COCOMO Users' Group 
Meeting, SEI, November 1989. 

Boehm, B.W., and Castor, V.L., (ed), "Draft DoD Software 
Technology Strategy," ODDR&E, December 1991. 

Boehm, B.W., Frazier, T.P., Angier, B., Bailey, E.K., and 
Wilson, K.L., A User's Guide For The Software 
Technology Economic Impact Model, Institute for Defense 
Analyses, IDA Document D-971 , October 1991. 

EIA Information System Forecast for the 1990's: the 2nd 
Annual Federal Information Systems Conference Final 
Report, Requirements Committee, Government Division, 
Electronics Industry Association, 1990, Alexandria, V A, 
May 30. 

Humphrey, W. S., Kitson, D. H., and Kasse, T. C., The 
State of Software Engineering Practice: A Preliminary 
Report, CMU/SEI-89-TR-1 or ESD-TR-89-01, Software 
Engineering Institute, February 1989. 

Jones, T.C., Programming Productivity, McGraw Hill, 
1986. 

Levitan, K. B., Salasin, J., Frazier, T. P., and Angier, B. 
N., Final Report on the Status of Software Obsolescence in 
the DoD, IDA Paper P-2136, Institute for Defense 
Analyses, August 1988. 

Martin, E., "The Context of STARS," Computer, Vol. 16, 
No. 13, November 1983, pp. 14-17. 

Office of Management and Budget, "Discount Rates to be 
Used in Evaluating Time-Distributed Costs and Benefits," 
Circular No. A-94, March 27, 1972. 

Parikh, G. and Zvegintzov, N., "The World of Software 
Maintenance," Tutorial on Software Maintenance. IEEE 
Computer Society Press, 1983, pp. 1-3. 

Porter, Michael E., Competitive Strategy, New York: The 
Free Press, 1980. 



www.manaraa.com

[REDWINE85] 

[SEID89] 

[STRASSMANN91] 

37 

Redwine, Samuel T., and Riddle, William E., "Software 
Technology Maturation," Proceedings. 8th International 
Conference on Software Engineering, IEEE, August 1985. 

Seidowitz, E. and Stark, M., "Ada in the SEL: Experience 
with Operational Ada Projects," Proceedings of the Second 
NASA Ada Users' Symposium, SEL-89-008, NASA/SEL, 
Goddard Space Flight Center, Greenbelt, MD, November 
1989. 

Strassmann, Paul A., Director of Defense Information 
Memorandum on "Open Systems Implementation," OASD 
(C31), May 23, 1991. 



www.manaraa.com

MEASURING THE DEVELOPMENT PERFORMANCE OF 

INTEGRATED COMPUTER AIDED SOFTWARE ENGINEERING (I-CASE): 

A SYNTHESIS OF FIELD STUDY RESULTS 

FROM THE FIRST BOSTON CORPORATION 

RAJIV D. BANKER 
Andersen Chair in Accounting and Information Systems 

Carlson School of Management 
University of Minnesota 
Minneapolis, MN 55455 

ROBERT~KA~N 

Associate Professor of Information Systems 
Stem School of Business 

New York University 
44 West 4th Street 

New York, NY 10012 

INTRODUCTION 

The First Boston Corporation, a large investment bank in New York City, 

began to build its own integrated computer aided software engineering (I-CASE) 

tool in 1986. This decision was made following a comprehensive survey of the 

market for CASE tools available at that time. This resulted in a determination that 

there would be no tools commercially available within the next few years that would: 

(1) enable cost-effective expansion of the firm's current applications to support 

the demand for increased financial market trades processing in a 24-hour 

a day, global market; 

(2) create high functionality, multi-tiered cooperative processing applications 

that efficiently utilize the power and flexibility of --

* microcomputers and engineering workstations on the trading 

platform; 



www.manaraa.com

40 

* 

* 

fault-tolerant minicomputers for intraday trades processing and a 

link to the financial markets; 

mainframe computers for current account and firm securities 

inventory management, and historical database queries to support 

trading analytics; and, 

(3) further control costs by paring down the overall level of developer expertise 

that needed to be brought together to create the firm's applications. 

Following in-house development of "High Productivity Systems" (BPS), an 

I-CASE tool set that supports the development of reusable software, First Boston's 

next step was to rebuild and roll out the core applications that formed its investment 

banking software architecture. 

A number of research questions were on our and management's agenda 

when we began to examine software development using HPS at First Boston. These 

included: 

(1) To what extent did I-CASE support the software development process, 

leading to improved productivity and higher quality applications? 

(2) Did software reuse drive the results? 

(3) Are the gains recognizable in small-scale experimental project 

development? 

(4) If so, can they also be replicated in large-scale application development? 

This paper provides some insights to these questions by presenting the 

results of two phases of a multi-year field study that was carried out at the First 

Boston Corporation. The first phase involved three exploratory I-CASE 

development experiments in which we closely examined development performance. 

The second phase involved data collection to support an empirical study of twenty 

large-scale software development projects representing the bank's I -CASE-built New 

Trades Processing Architecture (NTPA). 



www.manaraa.com

41 

We first turn to a more in-depth discussion of the results of the three 

experimental development projects. Thereafter, we will examine the results of the 

development in the second phase of the project. We conclude with some ideas on 

measurement and management approaches to improve the performance of I -CASE 

development activities. 

EVIDENCE FROM SMALL-SCALE EXPERIMENTAL PROJECTS 
DEVELOPED USING I-CASE 

A useful approach to measuring the potential productivity impacts of 

automated software engineering techniques is to examine how the process of 

development proceeds in an experimental setting. The reasons for this are 

threefold: 

(1) When a software project is developed as an experiment, the analyst has the 

opportunity to carefully craft the specifications for the project. This ensures 

that the developer will focus on developing the kind of system using the 

tools that management wishes to understand better. 

(2) Since the specifications of the product can be controlled and the developer's 

work can be closely monitored, it is possible to get a more accurate 

measurement of development productivity for an experimental project than 

for a real one. 

(3) Monitoring the developer also helps the analyst to understand the process 

behind the product. This enables the analyst to go one step farther: to gain 

an understanding of what factors drive the level of software development 

productivity that is subsequently observed. 

We applied this approach to estimate the productivity gains that First 

Boston's HPS delivered for development of three small experimental applications: 

(1) a retail industry information system that offers store, district and head office 

query and data processing capabilities; 

(2) an investment banking executive information system; and, 



www.manaraa.com

42 

(3) an investment banking trading workstation front-end. 

Each was designed to exhibit a high level of user functionality and also 

require at least two-tier (microcomputer and mainframe) cooperative or client-server 

processing. Based on surveys of project managers in related work we conducted at 

First Boston, we learned that developing a system with high functionality and 

two-tier cooperative processing would require less than twice the effort when 

compared to development using traditional means, even when project teams were 

staffed with the most able developers. We were interested to see the extent to 

which HPS affected development performance, even for a developer with relatively 

little software engineering experience. 

Experiment #1: A Retail Sales Tracking System 

Application Description. The experimental development project was a sales 

tracking system designed for broad use by large firms operating in multiple locations 

in the retailing industry. The report and inquiry capabilities of the system were 

meant to serve the needs of two levels of management senior management at the 

firm's head office and store managers in the field. The firm's computer architecture 

was expected to consist of a large mainframe computer at the head office and 

minicomputers at each of the stores. Management's interest in obtaining on-line, 

real-time and batch reports based on intra-day and historical sales necessitated 

cooperative processing, because all data were uploaded to the firm's head office at 

the end of each business day for long-term storage. The system's high functionality 

was distinguished by the pull down menus and mouse-driven input screens of the 

friendly user interface. 

Function Point Analysis. We performed a function point analysis to 

determine the relative size of the application. Function points measure the 

functionality of an application, as opposed to source lines of code (SLOe) (Albrecht 

and Gaffney, 1983). This metric is increasingly accepted as a meaningful and 



www.manaraa.com

43 

reliable measure upon which to base an estimate of development effort (Kemerer, 

1990; Symons, 1988). We estimated the size of the application at about 373 function 

points. Table 1 shows the breakdown by task of the function point total. 

Task Description. The functional specifications for the experimental 

development project were deSigned in cooperation with First Boston Corporation 

staff members in advance of engaging the experimental developer. The project 

consisted of six development tasks. Four of these were primary tasks, which were 

presented in detail at the beginning of the development period. The final two tasks 

were enhancements. The enhancements were only discussed with the developer 

following successful completion of the first four tasks. 

EXPERIMENT #1: 
DEVELOPMENT TASKS 

Primary Tasks 

Task #1 
Task #2 
Task #3 
Task #4 

Enhancement Tasks 

Task #5 
Task #6 

Overall Project 

Tasks #1-#6 

SIZE IN 
FUNCTION POINTS 

72 
80 
75 
70 

50 
26 

373 

TABLE 1. FUNCTION POINTS BY DEVELOPMENT TASK, EXPERIMENT 
#1 -- RETAILING APPLICATION 

Project Manager Perceptions of HPS Development Productivity. There were 

insufficient time or resources available during the study period to develop the 



www.manaraa.com

44 

experimental system in parallel using traditional3GL tools for comparison purposes. 

Therefore, we sought to obtain development effort estimates from two 

knowledgeable sources to support our conclusions about the productivity gains 

associated with using HPS. 

The first estimates were obtained in formal estimation sessions that we 

moderated involving two teams of First Boston's project managers. The second 

source was an external consulting firm to whom we gave detailed documentation on 

the experimental application. 

The two formal estimation sessions involved seven project managers overall. 

They were requested to gauge how long the technical design, construction and 

testing-implementation phases would take if the application were built: 

(1) without'HPS and using minimal3GL development tools; 

(2) using HPS to construct a two-tiered cooperative processing 

application; or, 

(3) using HPS to construct a three-tiered cooperative processing 

application. 

Project managers estimated that traditional development of the project 

would take about ten weeks, even if the system were redefined to incorporate less 

functionality. Two-tiered HPS development (similar to the experimental system that 

was later developed), on the other hand, was estimated to require only six weeks 

total. Increasing the requirements specifications to make the experimental 

development project a three-tiered system was estimated to take approximately eight 

weeks. 

When project managers were asked to estimate the effort required using 

traditional methods to provide the minimal functionality of the experimental 

development project in a single-tiered environment, they reported at least four 

months would be required. When they considered what would be involved in 



www.manaraa.com

45 

duplicating the full functionality provided by HPS development using traditional 

methods across the micro, mini and mainframe computer environments, that 

estimate rose to two years of development effort. This estimate parallels what we 

learned from project managers in another set of structured interviews conducted at 

First Boston. 

For a second independent and unbiased opinion, we provided the functional 

specifications for the experimental development project to an external consulting 

firm. They had no knowledge of any other aspects of this project. Their estimates 

indicated that duplicating the system with minimal functionality in a 3GL 

development environment would have taken at least two years, while use of 

commercially available 4GL productivity tools would have required about eight 

months. These estimates are summarized in Table 2. 

Experimental Setting and Subject. HPS Version 2.61 was used for the 

duration of this experimental development project. During this time, the developer 

worked in a technically stable development environment. The subject of the 

experimental application was a First Boston employee with an average knowledge 

of HPS, based on a little more than six months of experience, and somewhat greater 

than average programming ability. This person participated in the project on a 

full-time basis, with the exception of one brief interruption. 

Experimental Results. This project was actually completed in six weeks, 

matching the average of the two estimates provided by First Boston's project 

managers. Table 3 reports actual productivity levels in function points per person 

month for each experimental task. The developer observed that HPS Version 2.61 

development involving an IBM S/88 minicomputer benefitted the least from HPS; 

apparently there were few facilities in place at that time to support minicomputer 

software development. The developer also observed that development time for on

line, real-time screens was greatly reduced due to the implementation of a new 

screen painting facility. 



www.manaraa.com

46 

PROJECT MANAGER 
PRODUCTIVI1Y 
ESTIMATION 
CATEGORIES 

Overall Life Cycle 
Productivity 

Average of Productivity 
for Selected Sub tasks 

Maintenance/Enhancement 
Productivity 

High Functionality, 
Single-tiered 
Comparison: 
HPS to 
Traditional 

30% gain 

70% gain 

80% gain 

High Functionality, 
Cooperative 
Processing 
Comparison: 
HPS to Traditional 

100% gain 

130% gain 

120% gain 

TABLE 2. PROJECT MANAGER ESTIMATES OF DEVELOPMENT 
PRODUCTIVI1Y GAINS IN lWO DEVELOPMENT SCENARIOS -
RETAILING APPLICATION (EXPERIMENT #1) 

Throughout the experiment, we observed no explicit reuse of Objects that 

were constructed in other projects and stored in the repository. However, the 

developer "templated" a great many new Objects, by making slight modifications to 

objects that she had built Nevertheless, the productivity results, averaging 149 

function points per person month across the six experimental tasks, compared 

favorably with national estimates of software development productivity in the United 

States that are presented near the end of this paper (Bouldin, 1989). 

We also noted that productivity increased when the developer performed 

the second of two inter-related tasks. This is indicated by the relatively higher 

productivity levels observed for the enhancement tasks. We also observed that the 

developer's productivity declined following the brief, mid-project switch after Task 

#3 to another job. Finally, we observed that the developer pushed the limits of 



www.manaraa.com

47 

HPS' high productivity in completing the final task. We believe that this did not 

represent normal output, however, because the developer was due to go on vacation 

at the end of the week the project was completed. Table 3 summarizes these 

results. 

UNADJUSTED ADJUSTED 
EXPERIMENTAL ACTUAL ACTUAL 
DEVELOPMENT PRODUCTIVI1Y PRODUCIlVI1Y 
TASKS (Function points! (Function poimsI 

person month) person month) 

Primary Tasks 
Task #1 230 138 
Task #2 240 144 
Task #3 420 252 
Task #4 200 120 

Enhancement Tasks 
Task #5 360 216 
Task #6 775 465 

Overall Project 
Tasks #1-#6 248 149 

Note: We report both unadjusted and adjusted actual productivity estimates. Adjusting the actual 
productivity estimates downward by about 40% makes them comparable to development in 
other First Boston Corporation projects. 

The actual development effort we obselVed commenced at the technical design phase, whereas 
in most software development shops, strategic planning, business analysis and functional design 
account for a substantial amount of effort that we have not measured in the experiment 

TABLE 3. PRODUCTM1Y BY DEVELOPMENT TASK -- RETAIL 
APPLICATION (EXPERIMENT #1) 

Clearly, these figures are only estimates; they could not be substantiated at 

the time because the CASE tool was so new. In addition, the experimental project 

was small, and one could argue that commercial development of larger systems 

would be an order of magnitude or two more complex. Still, the results prompted 



www.manaraa.com

48 

us to look into HPS-based development performance more deeply, to attempt to 

understand what factors led to the high level of observed productivity. 

Experiment #2: An Executive Information System 

Application Description. This experimental application was meant to greatly 

extend the core functionality of a system that previously had been built using 4GL 

tools at a large financial institution. The application was intended to offer executives 

the opportunity to make queries about the content of business relationships with 

important customers. 

Function Point Analysis. This application measured 1509 function points, 

and was broken into two modules: 

(1) a customer reporting module, representing about 1056 function points, or 

70% of the application's functionality, derived primarily from external 

interfaces and input types; 

(2) a customer account maintenance module, representing the remaining 30% 

of the functionality, or 453 function points, derived primarily from input and 

output types. 

The complexity multiplier for the application was 1.03, suggesting that it was 

of normal complexity, and in fact, the application exhibited a somewhat lower level 

of functionality than we saw in other systems developed using HPS. Yet, this 

application was a cooperative processing application, as the experiment was designed 

to demonstrate three-tiered development productivity. User query databases were 

located on a mainframe. The front-end graphics were generated by a 

microcomputer, and employed data that were downloaded from a mainframe and 

updated in real-time by a fault-tolerant minicomputer. 

Task Description. The design specifications of this experimental project were 

created with the idea of testing the development of an application that incorporated 



www.manaraa.com

49 

many features that were believed to be well-supported by various elements of the 

HPS tool set. Thus, the resulting application included the basic functionality of its 

4GL-developed predecessor, but emphasized on-line, real-time functionality. 

Estimate of Labor Required. The core elements of the application were 

estimated by the developers to take about 4 to 5 person months to code using CICS 

screens and mainframe COBOL. However, we were unable to perform a function 

point analysis to determine the size of the 4GL-developed system. The developers 

indicated that the new version of the system that was to be built experimentally 

could not have been developed without HPS. 

Experimental Setting and Subjects. Experimental development was carried 

out under similar technical conditions as in Experiment #1. HPS Version 2.61 was 

used and the tool was stable during the time the application was under development. 

In addition to the design specifications, the primary difference between this 

experiment and Experiment #1 was that this development was undertaken by a 

team of seven developers, instead of just one person. Among the members of the 

experimental project team, only one had more than six months experience in the use 

of HPS, however, none of the participants was a novice in software development. 

Experimental Results. Total observed work effort for the project was 918 

hours, or about 5.18 person months, however, work on the project was not 

continuous for all the developers. Each person spent an average of about 135 hours 

on the project, with one person spending 10% more and another 10% less. These 

estimates reflect the fact that the developers were also spending time in 

demonstrations of the tool, in meetings and in other non-project related activities 

for 40 hours over the five-week period. This level of effort is consistent with the 

production of 175 function points per person month for the project overall. 

The developers uniformly reported that becoming adept at HPS 

development did not take very long. The application was developed in a series of 



www.manaraa.com

50 

increasingly complex prototypes, with developers alternately playing the role of 

critical users. The core functionality of the 4GL-developed system was in place 

within the first two weeks, and developers reported that team members had reused 

a significant number of objects built by the team members for the project However, 

we did not have a measurement approach in place at that time to capture the levels 

of reuse that were occurring. 

Experiment #3: A Trader Workstation Front-end 

Application Description. Experiment #3 involved the re-creation and 

expansion of the functionality of a trader workstation front-end that previously had 

been built at a large financial institution. The application was re-developed to 

demonstrate that HPS could support a set of cooperative processing functions that 

were evenly distributed across the mainframe, minicomputer and microcomputer 

platforms. 

Function Point Analysis. The size of the application was 1389 function 

points. The functionality was distributed as follows: 

(1) 691 function points represented minicomputer functionality; and, 

(2) the remainder, 698 function points, ran on the mainframe and 

microcomputer. 

When we examined the function point results more closely, we found that 

approximately 37% of the functionality was derived from interfaces and 25% was 

derived from inputs. 

This experiment occurred about four months after Experiments #1 and #2, 

and by that time, we had begun to make progress in understanding that tracking 

productivity alone would not tell the whole story of development performance with 

HPS. Thus, for this project we began to measure reuse more directly, in terms of 

a metric called "reuse leverage". Reuse leverage is defined as follows: 



www.manaraa.com

51 

In addition to the overall level of reuse leverage, we also tracked the 

greatest observed level ofreuse leverage for an object, and individual reuse leverage 

ratios for 3GL components, and HPS screens and rules. 

Experimental Setting and Subjects. HPS Version 2.61 again was used and the 

tool was stable during the time the application was under development. The team 

of developers that worked on this experiment had been involved in the development 

of a 3GL version of the same system at another fmancial institution. 

Experimental Results. Table 4 reports the reuse leverage results for 

Experiment #3. When examining these results, the reader should keep in mind that 

all objects (except existing 3GL components) used by the developers were also built 

by them during the course of their experimental development work. 

The reuse leverage results indicated that the developers extensively reused 

Objects that they built themselves. The overall level of reuse leverage of 3.35 times 

indicates that only about 30% (1/3.35) of the functionality had to be built from 

scratch, indicating Significant potential for a productivity gain to be observed. 

Trader workstation software normally requires many calls to well-tested 3GL 

components that provide specialized functions related to the pricing and trading of 

financial instruments. In most investment banks such library routines are normally 

available right off the shelf, so the reuse leverage observed for 3GL components is 

quite realistic. 



www.manaraa.com

52 

REUSE LEVERAGE CATEGORY 

Overall Reuse Leverage 

Greatest Observed Reuse 
Leverage for a Specific Object 

3GL Component Reuse Leverage 

HPS Screen Reuse Leverage 

HPS Rule Reuse Leverage 

REUSE LEVERAGE 

3.35 times 

17.00 times 

11.10 times 

3.43 times 

2.72 times 

TABLE 4. REUSE LEVERAGE RESULTS FOR TRADER WORKSTATION 
FRONT-END (EXPERIMENT #3) 

The greatest observed level of reuse leverage for a single object was about 

17 times, and this object was one that was built by the developers as an HPS object 

during the project Such high levels of reuse often occur in financial analytics 

software, for example, when date or interest rate-related computations must be 

performed in order to compute the present value of a series of cash flows related 

to a financial instrument 

More interesting to us was the evidence that two kinds of HPS objects -

"rules" and "screens" -- offer significant reuse opportunities. Rules can be thought 

of in COBOL as statements in the procedure division. Screens, on the other hand, 

enable users to interact with the application, input trade-related data and see the 

results of specific trades. In on-line, real-time applications, these two Object types 

are the most labor-consuming to build. (BatCh applications involve the creation of 

HPS "report" objects, while both batch and on-line applications require developers 

to build "files" and other less labor-intensive objects.) 

A reuse leverage of 2.72 times for rules is consistent with only having to 



www.manaraa.com

53 

build about 37% (1a-.72) of the procedure division, if development had occurred 

using COBOL. Screens tended to be reused even more, 3.43 times, which means 

that developers only built about 30% (1/3.43) of all application screens from scratch. 

Table 5 presents productivity results for Experiment #3, and breaks them 

out across the minicomputer function points and the combined PC-mainframe 

function points. The application required 502 person-hours of effort, for an 

aggregate productivity level of about 272 function points per person month. 

FUNCTION POINTS/ 
DEVELOPMENT ACl'IVIlY FUNCTION POINTS PERSON MONTH 

Minicomputer Software 
Funcdonali~ 691 222 

PC and Mainframe 
Software Functionality 698 336 

Overall Applicadon 1389 272 

Note: The actual productivity estimates were adjusted downward by about 40% to make them 
comparable to development in other First Boston Corporation projects. The actual 
development effort we observed commenced at the technical design phase, whereas in most 
software development shops, strategic planning, business analysis and functional design account 
for a substantial amount of effort that we have not measured in the ccperimenl 

TABLE S. PRODUCTIVllY RESULTS FOR TRADER WORKSTATION FRONT
END (EXPERIMENT #3) 

The results that were observed in the development of the trader workstation 

front-end (perhaps to a greater extent than the results observed in the first two 

experiments), confirmed that software reuse has the power to playa major role in 

the realization of improved productivity results. Although some of our preliminary 

questions about the extent of the productivity gains that might be observed in HPS 

development were answered, many more new questions emerged that would require 



www.manaraa.com

54 

additional study. These questions included the following: 

(1) Would the order of magnitude of the software development productivity 

results hold when the project was scaled up from an experiment to the 

creation of larger, more complex systems? 

(2) Would differences in software reuse leverage levels appear in larger 

projects? In projects that performed predominantly on-line, real-time 

processing versus batch processing? 

(3) How would software development performance change as the use of the 1-

CASE tool and the tool set itself matured? How rapidly could developers 

come up to speed to enable large productivity gains to be achieved? 

(4) What modifications to standard models in the software engineering 

economics literature would be needed to capture the impact of reuse on 

productivity? Does the creation of "reuse leverage" represent a separate 

"production process"? 

EVIDENCE FROM LARGE·SCALE DEVELOPMENT USING I·CASE: 

FIRST BOSTON'S NEW TRADES PROCESSING ARCHITECTURE (NTPA) 

The recent trend in software development in the investment banking 

industry has been in the direction of applications that deliver a higher level of 

functionality for the user. Such applications are exemplified by workstation displays 

that present historical pricing data, graphical analytics and up-to-date prices for 

financial instruments, in addition to a capability to effect a trade. In this section we 

will examine the First Boston Corporation's experience with respect to I-CASE

based software development of such applications. The software development 

performance results that we present emphasize the close relationship between 

software reuse and the firm's ability to achieve high levels of development 

productivity. 



www.manaraa.com

55 

First Boston's New Trades Processing Architecture: Background 

During the latter half of the 1980s, First Boston Corporation's senior IS 

management believed that to effectively support the firm's investment banking 

business increasingly sophisticated software applications and growing computer 

hardware power for high speed securities and money market transactions processing 

would be needed. This also would require immediate access to large mainframe 

databases whose contents could be processed in real-time using highly complex 

financial analysis software. Such applications would require local access and 

customized analysis of distributed databases for financial market traders, and 

management and control of the firm's cash balances and securities inventory. 

Similar to other firms in the indUStry, First Boston's systems would soon 

need to operate 24 hours a day across three platforms -- microcomputers, 

minicomputers and mainframes -- in support of global investment banking and 

money market trading activities. Much of the power that such softwarelhardware 

combinations would deliver was aimed at giving traders a few minutes (or even 

seconds) worth of time, an advantage that would help them to realize a profit in 

highly competitive markets. Such high functionality software was believed to offer 

a trader the ability to: 

(1) obtain improved information access, through consolidation of multiple 

digital data feeds of market information on a single trader workstation; 

(2) utilize real-time computer-based financial optimization analytics to support 

trading decisions with respect to existing and newly created financial 

instruments, and that would take advantage of the consolidated digital 

feeds; and, 

(3) customize a user-friendly, windowing interface to suit a specific need. 

In addition, senior management believed that higher functionality software 

could payoff in other ways. For example, through the delivery of consolidated and 

unbundled information on customer accounts and trader positions, it might be 



www.manaraa.com

56 

possible to improve global and local financial risk management 

The firm's senior management also recognized that it was not possible to 

bring high functionality systems into production rapidly with traditional development 

methods. The only way to avoid this "software trap" was to consider automating 

software development (Feder, 1988). Following a survey .of the available 

technologies then on the market, it was decided that an integrated CASE tool would 

be built in-house (Clemons, 1991). The result was the commitment of $100 million 

over the course of the next several years to create a new software development 

methodology and a new architecture of investment banking software applications. 

This investment would lay the foundation for High Productivity Systems (BPS), the 

firm's I -CASE tool set, and the infrastructure of investment banking applications for 

the firm that came to be known as the New Trades Processing Architecture (NTPA). 

BPS and the Reusable Software Approach 

The approach that the flrm implemented emphasized software reuse. The 

technical vision involved rebuilding the firm's information systems architecture in a 

way that their basic building blocks -- Objects and modules -- could be reused 

repeatedly. The methodology also would help to reduce the bank's reliance on 

costly language-specialized programmers by making it possible to develop software 

that could run on any of the three platforms with a single "rules language." This 

rules language would be defined within the HPS I-CASE tool. Code generators 

would then process this HPS code so that run-time COBOL, PL/1 and C and other 

code would be generated for each of the three major development platforms. The 

automated generation of run-time code was meant to screen developers from the 

complexity of the development environment. Most developers could focus on 

development by employing the HPS rules language, instead of traditional 3GLs. 

HPS supports reuse because it operates in conjunction with an object-based 

centralized repository. The object types are defined within the rules language and 



www.manaraa.com

57 

include programs, rules, output screens, user reports, data fields and 3GL 

components, among others. The centralized repository is the key enabling 

technology that supports the firm's reuse methodology. Specifications for the objects 

used to construct an application are stored in the repository and are widely available 

to other developers. The repository includes all the definitions of the data and 

Objects that make up the organization's business. 

The motivation for having a single repository for all such objects is similar 

to that for having a single database for all data: all objects need only be written 

once, no matter how many times they are used. When they are used and reused in 

various combinations, repository Objects form the functionality that represents the 

information systems processing capability of the firm. 

At the time we conducted this study, HPS provided application entity 

relationship diagramming and screen prototyping facilities for enterprise modeling 

and analysis and design. It also offered code generators for several development 

languages, as well as tools for debugging code and managing versions of the same 

application. Table 6 presents an overview of some of the capabilities of HPS in the 

first two years that it was deployed. 

Data Collection 

Data were gathered on the development of twenty NTPA applications 

(some of which were broken in sub-projects), representing substantially all I-CASE 

development at First Boston during the frrst two years following the deployment of 

HPS. Table 7 presents information that will provide the reader with some 

understanding of the functions these applications provided for the bank's 

information processing infrastructure. 

We obtained data in the following ways: 

(1) examination of records on labor charges to projects; 



www.manaraa.com

58 

LIFE-CYCLE ACTIVI1Y SPECIFIC TOOL SET 
PHASE SUPPORTED CAPABILI1Y 

Requirements Enterprise modeling Information engineering-based 
data modeling package 

Information engineering Diagramming tools to represent 
* entity-relationships 
* business function hierarchies 
* object-functionmatrixmapping 

System Detailed support for capabilities of diagramming tools 
Analysis enterprise modeling mentioned above apply here also 
and Design and information 

engineering Data dependency diagramming 

Construction Code development for Languages include: C, COBOL, 
cooperative processing on assembler, PLl and SQL 
mainframes, minis and PCS 

Code generation from HPS Specific generators for: Windows 
nrules languagen and OS/2; COBOL CICS/MVS 

batch; mM S/88 batch and on-line 
COBOL; IBM 3270 terminal 
screens; Windows and OS/2 
PresentationManagermenusand 
HELP screens; DB2 databases 

Implementation Application code debugging Debugging tool for generated code 
and Testing 

Installation support Tool capabilities include: 
* auto version installation control 
* repository migration control 
* system rebuild 

Production Miscellaneous Production version management 
and facilty; software distribution 

Maintenance controt debuggers for maintaining 
code 

TABLE 6. THE HPS TOOL SET IN YEARS 1 AND 2 FOLLOWING 
IMPLEMENTATION 



www.manaraa.com

59 

Broker Master Product Master 

Trade Inquiry Dividend Interest Redemption 

Dealers' Clearance Real-Time Firm Inventory 

Producer Master Affirmation 

Trading Account Mortgage-Backed Securities 

Trade Entry Overnight Firm Inventory 

Figuration Floor/Desk/Breaksheet 

Cash Management Firm Price Management 

Customer Account General Ledger Interface 

Note: In some instances, applications were subdivided forming the "projects" that we tracked. This 
led to the identification of multiple projects for a small number of the applications. In 
addition, the data set we examined did not actually include all of the applications listed above; 
some were excluded due to unavailable documentation or labor expense data. 

TABLE 7. APPLICATIONS IN THE NEW TRADES PROCESSING 
ARCHITECTURE·· SOFIWARE FOR THE OPERATING 
INFRASTRUCTURE OF AN INVESTMENT BANK 

(2) function point analysis based on examination of documentation describing 

NTP A applications; 

(3) interviews with project managers and project team members; and, 

(4) object analysis based on DB2 queries to the object repository and manual 

examination of application documentation. 

Estimates of labor consumed. We obtained disaggregated and detailed 

reports on the hours for each developer assigned to an application project. 

Although this data was relatively complete, the bank did not have a productivity 

reporting system in place (nor did it track productivity in terms of function points). 



www.manaraa.com

60 

As a result, in some cases it was necessary to apply second checks to ensure that we 

had captured all (or substantially all) of the labor hours expended on a project. In 

other cases where we believed that the data were too sketchy or likely to be in error, 

we omitted the project from further consideration in the study. 

Function point analysis. To perform function point analyses for NTP A 

applications, we collected application documentation for as many applications as we 

could. In some cases, no documentation was yet available. These had been built 

using HPS prior to the time that application documentation was an automated by

product of system analysis and design procedures. 

Function point analyses performed by members of the research team were 

double-checked for accuracy, and all members of the team were thoroughly trained 

to reduce the likelihood that the results would be different for different analysts. 

Project managers offered information about the extent to which the application 

development environment differed from the norm, making application development 

more complex. 

Interviews with project managers and team members. These interviews were 

conducted by two members of the research team over the course of two months. 

The primary purpose of the interviews was to gain assistance with interpreting the 

labor charges that were made to the projects, how to break those charges out over 

sub-projects (where they were defined and software developers were broken into 

smaller teams), and other aspects of a project that might result in different levels of 

observed productivity. For example, project managers assisted us by specifying the 

"environmental modifiers" that are applied in function point analysis. In many cases, 

we learned that I-CASE development tended to reduce environmental complexity 

for development. 

Because the research team was on-site at the bank, the interview process 

allowed for an initial meeting and then multiple follow-up interviews, when 



www.manaraa.com

61 

necessary. In many cases, project managers played a crucial role in helping to 

ensure that the data we collected were accurate. They also offered advice and 

guidance that helped us to shape a new modeling perspective that reflects the 

related activities of reusing software and improving productivity. 

Project team members provided useful information to enable us to better 

understand how the reusable software approach was applied in specific software 

projects. Through interviews with these developers, we learned about some of the 

advantages and disadvantages of the approach, and how smaller and larger projects 

might be affected differently. 

The key issue that was discussed had to do with the incentive compatibility 

of software developers to build objects that would be widely reusable by other 

software developers. In the first two years of software development under HPS, 

developers "owned" objects that they developed first Thus they had some measure 

of responsibility to ensure that the objects performed well in their own and in other 

developers' applications. 

Because guaranteeing the performance of a software object in multiple 

contexts was difficult for individual developers, an agency problem developed which 

resulted in developers encouraging one another to make slight modifications to 

existing objects, and then to rename them. This had the effect of shifting ownership 

from the original developer to the developer who modified the object 

Object analysis. In order to obtain information about software reuse levels 

in each of the projects, research team members conducted "object analyses" to 

enable the estimation of project reuse leverage. This proved to be more difficult 

than we envisioned for two reasons: 

(1) It was necessary to ensure that the documented application matched the 

content of the application that was actually built; and, 

(2) the documentation varied in quality, in some cases enabling function point 



www.manaraa.com

62 

analysis, but not a detailed count of application objects. 

In view of these difficulties, a compromise was necessary. We found this 

compromise in follow-up interviews with project managers, who informed us that 

some HPS objects required very little effort to build, while others would be likely to 

act as the primary cost drivers. This enabled us to focus data collection efforts on 

the key cost driver objects (rules, screens, files, reports and 3GL components). As 

it turned out, much of this data was available from the documentation, and was 

quite accurate. 

(More recently, we have been attempting to implement an automated Object 

analysis procedure to confirm the quality of the NTPA project reuse leverage levels 

that we report in this paper and elsewhere (Banker and Kauffman, 1991). Our 

attempts to carry out automated Object analysis for the NTP A projects have been 

hampered as the I-CASE tool has evolved. Further analysis requires the migration 

of prior versions of the applications to the centralized object repository that operates 

under the current version of HPS.) 

Software Reuse Results 

Table 8 presents the results obtained for reuse leverage in the twenty NTP A 

projects. The results contrast software development under HPS in Years 1 and 2 

following implementation. They show how reuse leverage differed for on-line, real 

time versus batch processing application development The table also shows the 

distribution of the application projects across these categories. 

The observed levels of reuse leverage were lower in Year 1 (1.82 times) 

than they were in Year 2 (3.95 times). This is a very likely outcome. The lower 

reuse leverage in Year 1 was probably caused by one of several factors. These 

include: 



www.manaraa.com

63 

CASE TOOL WEIGHTED AVERAGE REUSE LEVERAGE 
BY APPLICATION TYPE 

EXPERIENCE 
CATEGORIES ON-LINE BATCH BOTH 

(# PROJECTS) (# PROJECTS) (# PROJECTS) 

YEARl 
PROJECTS 2.95 1.41 1.82 
ONLY (5) (8) (13) 

YEAR 2 
PROJECTS 4.11 3.05 3.95 
ONLY (6) (1) (7) 

Note: The average reuse leverage results are weighted for project size in terms of the total number 
of objects in an application. 

TABLE 8. REUSE LEVERAGE FOR ON-LINE AND BATCH APPLICATIONS BY 
CASE TOOL EXPERIENCE CATEGORY 

* 

* 

* 

* 

lack of familiarity on the part of developers with the reusable software 

approach; 

difficulty in finding the appropriate objects to reuse; 

the practice (discussed earlier and interpreted as a response to the agency 

problem of object "ownership") of templating and renaming nearly matching 

software objects to avoid having to debug them; and, 

the small number of objects available in the repository for reuse. 

In the Year 1 results, it is also interesting to note that on-line, real-time 

application development evidenced higher reuse leverage (2.95 times) than batch 

processing applications (1.41 times). In Year 1, the HPS tool set was biased to 

support on-line, real-time development to a greater extent than batch processing 

applications. Although the developers of the HPS I-CASE tools had a year or more 

lead time to develop its capabilities, the functionality of the tools was still limited. 

Management decided to focus efforts to create HPS tools that would support on

line, real-time development earlier. Facing substantial risks associated with the large 



www.manaraa.com

64 

investment in building an I-CASE tool set, it was important to enable the delivery 

of applications that would be visible to users early on and whose impact would be 

felt in the business. In addition, the higher cost of developing more complex on-line, 

real-time applications made the focus natural. 

By Year 2 the HPS tool set increasingly treated on-line, real-time and batch 

development on equal terms. Year 2 reuse leverage for batch processing application 

(3.05 times) exceeded the Year 1 level observed for on-line, real-time applications 

(2.95 times). This improvement can be attributed (in part) to changes in the HPS 

tool set For example: 

* 

* 

batch development activities were made more productive through the 

deployment of a "report painting" facility; this enabled developers to nearly 

match the productivity that they could obtain for on-line, real-time 

applications when using a screen painter; and, 

when communication between platforms was required for both batch and 

on-line applications, highly specialized 3GL components (frequentiycalled 

"middleware" by the developers we interviewed) had now become available 

that could be "plugged in". 

Developers indicated that they were learning how to use HPS, and in the 

process, how to reuse more code more often. This perhaps best explains the level 

ofreuse observed for Year 2 on-line, real-time application development (4.11 times). 

This level of reuse is consistent with building just 24% of an application from 

scratch, while the remaining 76% results from reused Objects. 

Large Application Development Productivity 

Table 9 presents the function point productivity levels that were observed 

for the twenty NTP A projects. Similar to our presentation of the reuse leverage 

results, we include results for Years 1 and 2 to indicate the extent of the learning 

that was occurring about how to develop software using HPS. We also include 



www.manaraa.com

65 

separate productivity figures for on-line, real-time and batch processing applications. 

CASE TOOL 

EXPERIENCE 
CATEGORIES 

YEAR! 
PROJECTS 
ONLY 

YEAR 2 
PROJECTS 
ONLY 

PRODUCTIVIlY BY APPLICATION lYPE OF PROJECT 
IN FUNCTION POINTS PER PERSON-MONTH 

ON-LINE BATCH BOTH 
(# PROJECTS) (# PROJECTS) (# PROJECTS) 

32.1 9.4 15.6 
(5) (8) (13) 

135.4 38.4 121.6 
(6) (1) (7) 

Note: The average productivity results are weighted for project size in function points. 

TABLE 9. PRODUCTIVIlY COMPARISONS FOR ON-LINE AND BATCH 
APPLICATIONS BY CASE TOOL EXPERIENCE CATEGORY 

The productivity results in Year 1 suggest the power associated with 

software reuse. Productivity for Year lon-line, real-time application development 

was on the order of 32 function points per person month (FP 1M), while Year 1 

batch processing application development was only 9.4 FPIM. The reuse leverage 

associated with the on-line projects was 2.95 times (only 34% of the total 

functionality of the applications had to be built), and batch projects was a more 

modest 1.41 times (71% of application functionality had to be built from scratCh). 

By Year 2 productivity for both on-line and batch application development 

was substantiaUyimproved. Year 2 productivity for batch projects (38.4 FPIM) now 

exceeded Year 1 productivity for on-line, real-time applications. When these results 

were reviewed with project managers and software developers, most indicated that 

the increase in reuse leverage for batch development was responsible, and that the 



www.manaraa.com

66 

improved capabilities of the I-CASE tool set was a major factor. (Recall that Year 

2 reuse leverage of 3.05 times for batch processing application exceeded the Year 

1 level of 2.95 times observed for on-line, real-time applications.) 

Meanwhile, Year 2 productivity for on-line, real-time projects improved to 

135.4 FP/M, four times better than in Year 1. Developers that we interviewed 

indicated that the primary factors responsible for this result were the availability of 

a larger pool of reusable repository objects, and the knowledge of how to locate 

them. In Year 2 developers became more familiar with a facility in HPS that 

provided key word search for objects. The key words were taken from the Object 

name, still a relatively weak method on which to develop a complete set of 

candidate objects for reuse, but apparently very useful. 

(Since the time that we did this analysis, we have learned much about the 

process of reusing software in the HPS I-CASE development environment. Banker, 

Kauffman and Zweig (1992) reported that reuse is often biased towards reuse of 

"owned" Objects or objects created by project team members. Apparently the key 

word search facility was not the only, and probably not even the primary mechanism 

that developers used to identify objects that could potentially be reused.) 

Comparison of Productivity Results with National Averages 

Table 10 summarizes the productivity results obtained in the study and 

compares them with estimates of national averages of software development 

productivity made by Capers Jones. The present results compare favorably with the 

estimated national averages, and suggest the potential for order of magnitude 

productivity gains that may become possible when I-CASE development tools are 

used. 



www.manaraa.com

PROJECT 
COMPARISON 
CATEGORIES 

FUNCTION 
POINTS! 
PERSON
MONTH 

67 

COMMENTS 

Intra-Jirm Estimates of Year 2 Performance 

BATCH 
PROCESSING 
ONLY 

ON-LINE, REAL
TIME ONLY 

External World Estimates 

38.4 Productivity influenced by lack of 3GL component 
handling facility in earlier version of CASE tooL 
Batch report painter and SQL query support 
added to boost productivity in Year 2. 

135.4 Productivity enhanced by use of rapid, on-line 
screen painter, and high leve1s of reuse. 

MILITARY! 3.0 Large, technically complex development efforts. 
DEFENSE DEPARTMENT 

TRADITIONAL 5.0 Averages initial development and subsequent 
3GL maintenance. 

MIS BUSINESS 8.0 Averages development activities conducted with 
APPLICATIONS and without CASE too1s. 

MATURE CASE, 15.0 "Mature" defined as a minimum of two years of 
NO REUSE experience with a relatively stable tool set. 

MATURE CASE, 65.0 A projected target for firms using an I-CASE 
WITH REUSE tool. 

Note: Theextemal world figures are found in Bouldin (1989), who attributes them to Capers Jones. 

TABLE 10. COMPARISONS BETWEEN INTRA-FIRM AND EXTERNAL WORLD 
SOFnWAREDEVELOPMENTPRODUCTnnTY 



www.manaraa.com

68 

CONCLUSION 

This paper provided evidence of the extent to which software reuse and 1-

CASE tools that operate in conjunction with a centralized repository have the 

potential to influence software development performance. Clearly, the results of this 

study can only be generalized to a limited extent The research examined one 1-

CASE tool set at one site over two time periods, just following deployment of the 

tools. Nevertheless we learned much about the process of modeling software 

development productivity in this kind of development environment and the kinds of 

new metrics that management will want to track to better understand I-CASE 

development In this concluding section, we first offer some preliminary answers 

to questions that were posed earlier. Finally, we end this paper by offering some 

thoughts about what implications our work may have for researchers and managers. 

Did the order of magnitude of the software development productivity results 

observed in the experiments hold for larger-scale development? Apparently they did 

not. Although development productivity was at least one order of magnitude better 

(135.4 FP/M for I-CASE on-line, real-time application development versus Capers 

Jones' estimate of 8.0 FP/M for business MIS applications developed using 

traditional methods) than if 3GL methods had been used, it was evident that the 

results only held in a limited scenario. Moreover, nowhere did we observe in the 

NTPA development the 200+ FP/M productivity levels observed in experimental 

development. 

Were the levels of software reuse different in the experimental and large

scale development projects? Here we had just one data point among the 

experimental projects to make our comparison. The results suggest that they were 

similar, especiaUy in Year 2. (The comparison is between the overall reuse leverage 

(3.35 times) observed for Experiment #3, the trader workstation front-end, and the 

reuse leverages observed for NTPA on-line (4.11 times) and batch processing (3.05 

times) applications in Year 2.) Increasing software reuse as project size increases 



www.manaraa.com

69 

involves planning, coordination and search costs that were not evident for the 

experimental projects or for smaller projects. But larger projects may offer more 

opportunities for reuse, despite their complexity. The relationship between project 

scale and software reuse observed is an issue that must be addressed in future 

research. 

Did development performance change as the use of the I-CASE tool and 

the tool set itself matured? There is no doubt from the results that we report and 

the interpretations offered to us by First Boston Corporation project managers that 

learning played a very important role in the outcome. Developers were learning to 

use the new tools as they became available. They were learning to be better at 

reusing code simultaneously. We observed a very steep learning curve for 

productivity and reuse leverage between Years 1 and 2 in the use of HPS to develop 

NTP A The extent of the potential impact of future learning remains an open issue, 

however. 

What was learned from this study that will assist other researchers in their 

attempts to model I-CASE development performance? Our research suggests that 

software development labor is transformed into software outputs (objects, modules 

or function points in this case) in the presence of a second production process that 

leads to observed reuse. From what we have seen, reuse leverage is created through 

a separate production process that involves labor, an existing pool of software 

Objects and significant capital invested in a tool that supports the reusable software 

approaCh. Although detailed consideration of the factors that may drive higher levels 

of software reuse is beyond the scope of this paper, the reader should recognize that 

such factors must be considered to understand how to manage projects to generate 

higher levels of software reuse, paving the way for order of magnitude of gains in 

development productivity. 

From a software engineering economics perspective, the well-accepted 

concept that software outputs are based on a single "software development 



www.manaraa.com

70 

production function" may need to be re-evaluated. We have made initial attempts 

along these lines by estimating two separate production functions using seemingly 

unrelated regression estimation. For additional details, see Banker and Kauffman 

(1991). 

The implications of this research for managers in I -CASE environments are 

as follows: 

(1) Because software reuse appears to constrain the potential for software 

development productivity, it makes sense to implement measurement 

systems that track software reuse, as well as software development 

performance. Problems with software development productivity may be due 

to insufficiently high levels of reuse. 

(2) If managers believe that it is worthwhile to measure software reuse, they 

should also recognize the potential difficulties that such measurement may 

entail. The metric that is discussed in this paper, reuse leverage, is 

probably new to the reader. There are no widely implemented standards 

at present, though the IEEE has written a standards document and made 

it widely available for comment In addition, measuring reuse leverage 

manually was very labor and time-consuming. The only real solution is to 

automate such analysis. (In fact, very little work has been done to date in 

this area also. One exception is the work of Banker, Kauffman, Wright and 

Zweig (1992), who proposed a taxonomy of software reuse metries and 

suggested an approach to their automation.) 

(3) The levels of observed reuse are likely to be influenced by the set of 

incentive mechanisms that managers devise to overcome the "agency 

problem" that we described. In the development environment that we 

studied it is likely that a one-time (if minor) gain in reuse leverage could be 

obtained by placing Objects, once they have been developed and tested, on 

neutral ground, so that the original developer would no longer be required 

to guarantee their performance. Other gains could be achieved by 

implementing incentive mechanisms to increase more directly the observed 



www.manaraa.com

71 

levels of reuse. 

A natural new owner would be an "object administrator", whose primary 

roles would involve: 

(1) ensuring that a broad base of reusable repository objects is available for 

other developers to use; 

(2) planning for a minimal subset of "reusable objects" to provide the kind of 

functionality that is needed in many different kinds of projects; and, 

(3) proposing incentive mechanisms for senior management review that will 

assist in the achievement of higher levels of reuse leverage to support 

improved productivity. 

Our call for "object administration" is meant to achieve the same kinds of 

payoffs in I-CASE development in the 1990s that database administration has 

delivered since the 1970s. 



www.manaraa.com

72 

[Albrecht and Gaffney, 1983] 

REFERENCES 

Albrecht, AJ. and Gaffney, J.E. "Software 

Function, Source Lines of Code, and 

Development Effort Prediction: A Software 

Science Validation," IEEE Transactions on 

Software Engineering, 9:6, November 1983. 

[Banker and Kauffman, 1991] Banker, R. D, and Kauffman, R. J. "Reuse and 

Productivity: An Empirical Study of Integrated 

Computer Aided Software Engineering (lCASE) 

Technology at the First Boston Corporation," MIS 

Quarterly, September 1991. 

[Banker, Kauffman and 

Zweig, 1992] 

[Banker, Kauffman, Wright 

and Zweig, 1992] 

[Bouldin, 1989] 

Banker, R. D., Kauffman, R. J., and Zweig, D. 

"Monitoring the 'Software Asset' Using Repository 

Evaluation: An Empirical Study." Forthcoming in 

IEEE Transactions on Software Engineering. 

Banker, R. D., Kauffman, R. J., Wright, c., and 

Zweig, D. "Automating Reuse and Output 

Measurement Metrics in an Object-Based 

Computer Aided Software Engineering 

Environment" Forthcoming in IEEE Transactions 

on Software Engineering. 

Bouldin, B. M. "CASE: Measuring Productivity -

What Are You Measuring? Why Are You 

Measuring It?" Software Magazine, 9: 10, August 



www.manaraa.com

[Clemons, 1991] 

[Feder, 1988] 

[Kemerer, 1990] 

[Symons, 1988] 

73 

1989. 

Clemons, E. "Evaluating Investments in Strategic 

Information Technologies," Communications of 

the ACM, January 1991. 

Feder, B. "The Software Trap: Automate -- Or 

Else," Business Week, May 9, 1988. 

Kemerer, C. F. "Reliability of Function Points 

Measurement A Field Experiment," Working 

Paper, Sloan School of Management, MIT, 

December 1990. 

Symons, C. R. "Function Point Analysis: 

Difficulties and Improvements," IEEE 

Transactions on Software Engineering, 14:1, 

January 1988. 

ACKNOWLEDGEMENTS 

Special thanks are due Mark Baric, Gene Bedell, Gig Graham, Tom Lewis and 

Vivek Wadhwa of Seer Technologies. They provided us with access to data on 

software development projects and managers' time throughout our field study at the 

First Boston Corporation. We also appreciated the efforts of Eric Fisher, Charles 

Wright, Vannevar Yu and Rachna Kumar, who assisted in the data collection. An 

earlier version of this research was presented at the "Software Engineering 

Economics I Conference," sponsored by the MITRE/Washington Economic Analysis 

center, June 1991. Jean Kauffman provided helpful editorial comments to improve 

the readability of the paper. All errors are the responsibility of the authors. 



www.manaraa.com

RETURNS-TO-SCALE IN SOFTWARE PRODUCTION: A COMPARISON OF 
APPROACHES 

Patricia E. BYRNES 
School of Public Policy and Management 

Ohio State University 
Columbus, Ohio 43210 USA 

Thomas P. FRAZIER 
Institute for Defense Analyses 

1801 N. Beauregard Street 
Alexandria, Virginia 22311 USA 

Thomas R. GULLEDGE 
The Institute of Public policy 

George Mason University 
Fairfax, Virginia 22030 USA 

I. INTRODUCTION 

The literature on the software development industry 

(summarized in [2]) contains references to returns-to-scale 

as a factor in software development productivity. As noted 

in [2], most stUdies have typically related project size to 

labor productivity. A general finding is that software 

development tools and more specialized labor are usually 

employed on larger, in terms of project size, software 

projects. However, this observation does not necessarily 

imply increasing returns to a particular input, such as 

software development tools or more specialized labor. The 

confusion in the literature stems from the use of the term 

scale and the more general observation that large projects 

rarely have the same capital-labor mix as their smaller 

counterparts. In this paper returns-to-scale estimates are 

allowed to vary with both project capital-labor mix and 

project size. 

We estimate returns-to-scale in both parametric and 

nonparametric production models' for a sample of Department 

See [11] for a comparison of parametric and 
nonparametric methods for measuring productive efficiency. 



www.manaraa.com

76 

of Defense (000) Automated Information systems (AIS) software 

development projects. We demonstrate that when input mix is 

believed to be an important determinant of economies-of

scale, the typical approach of relating labor productivity to 

project size may be inappropriate for determining the true 

nature of returns-to-scale and the effect of economies-of-

scale on productivity. We also confirm the Banker and 

Kemerer [2] observation that as proj ect size increases, 

diminishing returns eventually prevail. However, we extend 

the Banker and Kemerer results by showing that when labor and 

productivity tools are both included as production inputs, 

efficient project size is, in general, larger than when only 

a labor input is considered. 

A. The Concept of Returns-to-Scale 

A production technology defines the technical means 

whereby materials and services (designated inputs) may be 

combined to produce one or more goods or services (the 

outputs of the process). Economists have chosen to represent 

these technical relationships with production functions which 

express the maximum level of output (s) produced for each 

given level of inputs2• Graphically the production function 

can be represented by the isoquant (constant product locus) 

in Figure 1. In Figure 1 we assume that two inputs, capital 

(K) and labor (L), are used to produce one output, Q. It 

should be noted that while point A lies on the isoquant; 

point A' does not; that is, point A' does not represent a 

technically efficient means of producing a given output level 

Qo' Mathematically, a production function can be written as: 

2 The neoclassical theory of production economics is 
presented by Ferguson [9]. More modern treatments of the 
subject are presented by Shephard [12] or Fare [7]. 



www.manaraa.com

77 

where Q is the maximum output rate and the x's are the input 

rates of the n production factors. One characteristic of the 

production technology is returns-to-scale. 

K 

.K 
L 

&-----------------------~L 

Figure 1. Software Production Function. 

Returns-to-scale is defined as the relative increase in 

output as all inputs are increased proportionally so that the 
relative factor mix does not change. The returns-to-scale 
elasticity, e, is given by: 

e = dQ • .! 
dA Q' 

where A is the proportionate expansion in all inputs, and is 

equal to dF/dx i for all i. By definition, lei> 1 indicates 

increasing returns-to-scale, lei = 1 indicates constant 



www.manaraa.com

78 

returns-to-scale, 

returns-to-scale. 

and < 1 indicates decreasing 

Alternatively, total differentiation of 

the production function yields an equivalent expression that 

allows the returns-to-scale elasticity to be expressed in 

terms of the partial factor output elasticities as: 

Graphically, returns-to-scale can be depicted in terms 

of the spacing among several isoquants, each associated with 

a different output rate as indicated in Figure 1. 

Furthermore, we can also differentiate between different 

scale effects based on different production functions. 

Following [6], consider two distinct rays from the origin, 

K'IL' and K/L. Along these rays the total product curves 

differ for the different production functions. For the most 

general case, the ray-homothetic production function, the 

total product curves associated with K'IL' and KIL may differ 

both with respect to factor intensity and output level. 

Another case, the ray-homogeneous production function allows 

the total product curves to vary with factor proportions, but 

they are monotone; that is, the degree of homogeneity is 

constant for each K/L. Or equivalently, scale elasticity is 

constant along a particular KIL but may differ between K'IL' 

and K/L. For the homothetic production function, the total 

product curves are also identical, however, they need not be 

monotone; that is, scale elasticity may vary with output. 

Homothetic production functions and their corresponding 

scale effects can be explained in another way. Define the 

marginal rate of technical substitution (MRTS) as the 

negative of the rate at which one input substitutes for 

another along an isoquant (i.e., holding output rate 

constant). Using the general production function, the MRTS 

is defined as 



www.manaraa.com

79 

where Q is a given output rate. For homothetic technologies 

the MRTS remains unchanged as we move from one isoquant to 

another keeping input proportions constant; that is, the MRTS 

along a ray K' /L' is constant. Thus, a homothetic technology 

implies that the returns-to-scale elasticity, E, is a 

function of only output since it will be invariant to changes 

in input proportions. 

A further decomposition of homothetic technologies 

defines the most restrictive production function, the 

homogeneous production function. Homogeneous production 

functions are characterized by a constant returns-to-scale 

elasticity; that is, E is invariant to changes in Q (as well 

as input proportions). This means that the total product 

curves associated with the two factor proportions K'/L' and 

K/L are identical and monotone. 

B. Software Productivity Literature Review 

Much of the literature relevant to scale estimation in 

new software development is summarized by Banker and Kemerer 

[2]. In most of these studies regression analysis is used to 

estimate returns-to-scale, and in most cases a global 

estimate is obtained for each software project data set. 

Banker and Kemerer extend this research by applying 

nonparametric linear programming methods to compute a most 

productive scale size for new software projects (see [1] for 

a presentation of most productive scale size). Since the 

linear programming approach provides a scale estimate for 

each software project, it is possible to examine how scale 

varies with project size. Given our understanding of the 

software development process, a reasonable hypothesis is that 

small projects are characterized by increasing returns, while 



www.manaraa.com

80 

large projects are characterized by diminishing returns. 

This hypothesis was not rejected by Banker and Kemerer after 

examining numerous new software project data sets. 

C. An Extended Hypothesis 

This paper extends and refines the work of Banker and 

Kemerer. We confirm, using a DoD software development 

project data set, that increasing returns are associated with 

small projects and decreasing returns are associated with 

larger projects. In addition, we hypothesize that the 

software productivity tools identified by Boehm [3] delay the 

inevitable occurrence of diminishing returns. That is, given 

the tools, increasing returns are observed for larger 

projects than when ignoring the tools. If this hypothesis 

cannot be rejected, there are obvious implications for 

software development practitioners. Our data set also 

suggests that higher-level productivity tools have larger 

marginal productivity with respect to potential output. 

II. THE DATA 

The data were taken from a stratified survey sample of 

90 Department of Defense Automated Information Systems 

supported by general purpose automated data processing and 

developed by both in-house and contractor personnel [10]. 

Since there is no completely documented inventory of DoD AIS, 

the sampling strategy involved collecting data on software 

development projects that are consistent in age, function, 

and DoD component within the known DoD hardware inventory. 

The DoD computer hardware inventory is contained in the 

Automated Resources Management System maintained by the 

Defense Logistics Agency [5]. 

In order to account for differences in computer 

languages, code reuse, and straight conversion from existing 

code; the selected sample contains only those COBOL projects 

for which the algorithms and logic design were almost 



www.manaraa.com

81 

entirely created from scratch. There were 37 projects that 

fulfilled these requirements. This data set is homogeneous 

in the sense that all projects are sized in standardized 

COBOL lines of code (described further below). 

To model software development in a production 

framework, the inputs and outputs must be specified. We 

introduce the following notation which is used in the tables 

and models that follow: 

Q = software project output; i.e., thousands of 
source lines of code, 

L = labor measured in man-months of effort required 
to complete the main software build. This is 
defined to include effort on detailed design, 
coding, integration, quality assurance, 
configuration management, publications, and 
management, 

number of low-level productivity tools employed 
per software project, 

number of nominal-level productivity 
employed per software project, 

tools 

number of high-level productivity tools employed 
per software project. 

Table 1 contains descriptive statistics of these variables. 

Table 1. Variable Descriptive statistics 

Variable Mean St. Dev. 

287.5 
609.7 

2.9 
4.8 
4.2 

472.2 
1050.6 

1.5 
2.2 
3.0 

Minimum 

5.0 
10.5 
1.0 
1.0 
1.0 

Maximum 

2000.0 
5000.0 

7.0 
10.0 
14.0 

The output measure, thousands of source lines of code 

(Q), is taken from the survey. The respondents were 

instructed to follow the code counting convention used in 



www.manaraa.com

82 

[3] • Lines of code are defined to include all program 

instructions created by project personnel and processed into 

machine code by some combination of preprocessors, compilers, 

and assemblers. The measure excludes comment instructions and 

unmodified utility software, but includes job control 

language, format statements, and data declarations. The 

definition of lines of code also excludes non-delivered 

support software such as test drivers. However, if these are 

developed with the same care as delivered software, with 

their own reviews, test plans, documentation, etc.; then they 

were included in the count. 

Turning to the specification of the inputs. The labor 

variable (L) was taken directly from the survey as defined 

above. We specified three capital variables based on a 

software tools classification and rating scheme defined by 

Boehm [ 3 ] . Each respondent in the survey indicated the 

availability and usage of the software productivity tools as 

described in Table 27-7 of [3], plus several additional tools 

that were developed and employed subsequently. In order to 

ensure definitional consistency across all respondents, a 

glossary of terms concerning each of the tools was provided 

with the survey instrument. We used a modification of 

Boehm's rating classification scheme. Those tools that were 

described as being low and very low were aggregated into a 

single rating category. The same grouping strategy was 

executed for those tools that Boehm labeled high and very 

high. Hence, we have three tool categories: low, nominal, 

and high. The tools and the groupings are listed in Table 2. 

III. MODELS OF RETURNS-TO-SCALE 

To analyze returns-to-scale for the sample of new 

software projects, we estimate several models. First, we 

estimate the parameters of a ray-homothetic production 

function [8]. This specification is flexible, and it permits 

returns-to-scale to vary with respect to output and input mix 

(i.e., the tools/labor ratio). 



www.manaraa.com

83 

Table 2. Software Tools Rating Scale 

Ratings Toolsa 

Low 

Nominal 

High 

Assembler, Chief Programmer 
Team, Configuration 
Management, Database Aids, 
Batch Debuggers, Programming 
Support, Time Sharing 
Operating System, 
Performance Measurement and 
Analysis Tools. 

HOL Compiler, Project and 
Data Entry Control Systems, 
Data Dictionaries, 
Interactive Debuggers, 
Source Code Formatters, 
Report Generators, Screen 
Generators, Reusable Source 
and Object Code Library 
System, Virtual Memory 
operating System, Macro 
Assembler, Text Editorand 
Manager. 

Cross Compiler, Conversion 
Aids, Database Design Aids, 
DBMS, Distributed 
Processing, Active 
Documentation Tools, Failure 
Analyses Tools, Formal 
Verification, Display 
Formatters, Code Generators, 
Application Generators, 
Integrated Computer Assisted 
Software Engineering 
Environments, Local Area 
Networks, Program Design 
Language and Tools, 
Requirements Specification 
Language and Analyzer, 
Interactive Source Editor, 
Automated Verification 
System, Expert Systems 
Applications to Software 
Engineering, Instruction Set 
Simulators, Regression 
Testing, Restructing Tools 
and Test Coverage Analyzers. 

aThis listing contains the tools presented in [3], plus 
tools developed subsequent to Boehm's original work. 



www.manaraa.com

84 

There is no assumption that larger projects require a 

larger number of unique tools. Optimal project size varies 

with input mix. However, we expect the capital/labor ratio 

to be high for smaller projects; if for no other reason, 

because tools may be shared on larger projects. We could 

make a stronger statement about scale if we have more 

information about how the tools were actually used, but our 

data is not sufficiently rich to match unique tools to unique 

labor units. This is a standard problem in production 

function specification and parameter estimation. 

We demonstrate with the ray-homothetic model that the 

software productivity tools have an impact on scale. We also 

confirm this result with a less restrictive nonparametric 

linear programming approach (see [1] and [6]). In section IV 

we use the results of these analyses to define results which 

are of use to software development project managers. We also 

show "that there is significant variation in tool marginal 

productivity, a result that has implications about which 

tools to employ. 

A. The Ray-Homothetic Model 

The ray-homothetic production function can be written 

as: 

where S = K1 + K2 + K3 +L and a, a L, a K1 , a K2 , and a K3 are 

parameters to be estimated. The general properties of the 

above equation are discussed by Fare [8]. Most importantly, 

this function is ray-homothetic and contains homothetic and 

homogeneous production functions as special cases. 



www.manaraa.com

85 

To examine returns-to-scale and optimal output, the 

elasticity definition of returns-to-scale is applied to the 

production function to obtain the following expression for 

returns-to-scale: 

RT8 = 
Q 

As usual, RTS >1 indicates increasing returns-to-scale, RTS 

= 1 indicates constant returns-to-scale, and RTS < 1, 

decreasing returns-to-scale. Optimal or ideal scale is 

obtained when constant returns-to-scale prevails, i.e., when 

RTS = 1. Thus, optimal scale is given by 

OPTQ 

These measures indicate that returns-to-scale and optimal 

scale (from the ray-homothetic production function) vary with 

output level and input mix. For example, if the estimated 

parameter for a particular input is less than zero, then the 

magnitude of scale economies declines with increases in the 

corresponding input's proportion of the total inputs. To 

estimate the parameters of the ray-homothetic production 

function we augment the function with an error term, u, as: 

L KKK 
Q = In6+aL·-·ln L+a .2·1n K +a ·--..!.·In K2+aJ(. .2·1n 

8 K18 1 K-z8 38 



www.manaraa.com

86 

B. The Linear Programming Model 

For the linear programming approach a reference 

technology is constructed from observed inputs and outputs. 

Let X be a (nxm) matrix of observed inputs (n inputs for m 

software projects) and Q be a (lxm) vector of observed output 

rates for each of the m software projects. Let superscript 

i define a particular software project contained in X and Q. 

Let Xi be a (nx1) vector of observed inputs on project i. The 

maximum potential output is defined by: 

F (X i) = Max Q- Z 

ST: X-Z S xi 
Z ~ 0 

The (mx1) vector Z contains the intensity variables. This 

linear program is solved once for each software project. The 

linear programs only differ in the right-hand-side vector 

which contains the observed inputs on a particular software 

project, i. 

* If Z = (Z1'z2' •••• 'Zm) is the optimal intensity variable 

vector, then following Banker [1], a project exhibits 

Constant Returns-to-Scale (CRS), Increasing Returns-to-Scale 

(IRS), or Decreasing Returns-to-Scale (DRS) according to the 

following: 

m 

CRS iff SCALE = L Z; = 1, 
i=O 

m 

IRS iff SCALE = L Z; < 1, 
i=o 



www.manaraa.com

DRS iff 

IV. EMPIRICAL RESULTS 

A. Ray-Homothetic Model 

m 

SCALE = :E z; > 1. 
i=O 

87 

The production function model can be estimated using 

ordinary least squares without simultaneous equation bias if 

we assume that the observed data were generated under the 

conditions of expected prof it maximization (see [4] and 

[13] ). The least squares regression results are given in 

Table 3. 

Table 3. Regression Results 

Parameter Estimate t-ratio 

6 -1011. 55 -2.97 
a l 232.60 4.31 
a K1 1571. 57 1.54 
a K2 959.09 0.66 
a K3 1496.06 0.65 

n = 37 

In addition to the intercept, the coefficients on labor 

and the low-level productivity tools are significant. All of 

the estimated input coefficients are positive, indicating 

that increasing the relative importance of anyone input has 

a positive effect on optimal size. 

Using the parameter estimates and the input/output data, 

we computed RTS and OPTQ for each software development 

project. These estimates are given in Table 4, along with 

the observed output rate and the capital-labor ratio. From 

these estimates of returns-to-scale we observe that 8 

projects operate under decreasing returns-to-scale, while 29 



www.manaraa.com

88 

are operating under increasing returns-to-scale; i.e., actual 

output is less than optimal. To examine the relationship 

between RTS and the characteristics of software projects, 

descriptive statistics for output, optimal output, and the 

observed input mix, K/L, are given in Table 5. 

Table 4. Results for the Ray-Homothetic Model 

Project Q 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

130.0 
400.0 

68.0 
75.0 
12.0 
20.0 
45.0 
75.0 

200.0 
147.0 

1098.0 
1500.0 
1500.0 

300.0 
22.0 
45.0 

114.5 
194.0 
102.0 
250.0 
212.0 
84.0 
41.2 
37.9 

200.0 
5.0 

194.0 
50.0 
20.0 
90.0 
10.0 

140.0 
30.0 

700.0 
25.0 

2000.0 
500.0 

OPTQ 

299.8 
302.1 
470.3 
281.4 
512.6 
324.7 
395.8 
279.8 
277 .0 
292.8 
268.7 
288.9 
267.2 
276.2 
566.2 
303.8 
270.6 
283.9 
269.1 
283.6 
267.7 
297.1 
342.1 
428.4 
344.9 
395.8 
395.8 
311. 7 
482.7 
354.6 
350.5 
307.8 
535.6 
277.5 
406.0 
273.2 
270.3 

Scale 

2.3 
.8 

6.9 
3.8 

42.7 
16.2 
8.8 
3.7 
1.4 
2.0 

.2 

.2 

.2 

.9 
25.7 
6.8 
2.4 
1.5 
2.6 
1.1 
1.3 
3.5 
8.3 

11.3 
1.7 

79.2 
2.0 
6.2 

24.1 
3.9 

35.1 
2.2 

17.9 
.4 

16.2 
.1 
.5 

Type 

IRS 
DRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
DRS 
DRS 
DRS 
DRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
DRS 
IRS 
DRS 
DRS 

K/L 

.055 

.059 

.458 

.025 

.611 

.100 

.250 

.022 

.018 

.043 

.004 

.037 

.002 

.016 

.857 

.062 

.007 

.029 

.005 

.028 

.003 

.050 

.133 

.333 

.138 

.250 

.250 

.076 

.500 

.158 

.150 

.069 

.708 

.018 

.275 

.012 

.007 



www.manaraa.com

89 

projects characterized by increasing returns are, on average, 

the smaller (in terms of Q); the largest project with 

increasing returns has 250 thousand lines of code. The 

projects characterized by increasing returns have, on 

average, higher capital-labor ratios than the eight projects 

which operate under decreasing returns. 

Table 5. Statistics by RTS Results for the 
Ray-Homothetic Model 

Variable Mean St.Dev. Minimum Maximum 

IRS (n=29) 

SCALE 13.010 18.760 1.000 84.800 
Q 90.980 72.700 5.000 250.000 
OPTQ 377.410 139.300 236.300 713.300 
K/L .195 .224 .003 .857 

DRS (N=8) 

SCALE .390 .270 .120 .840 
Q 999.750 621.000 300.000 2000.000 
OPTQ 253.600 189.800 235.300 293.400 
K/L .019 .018 .002 .059 

TOTAL (N=37) 

SCALE 10.290 17.370 .120 84.770 
Q 287.470 472.170 5.000 2000.000 
OPTQ 350.640 133.560 235.280 713.330 
K/L .157 .211 .002 .857 

-------------------------------------------------------------

B. Nonparametric Linear programming Approach 

In order to isolate the effects of the software 

development tools, the 37 linear programs were analyzed two 



www.manaraa.com

90 

ways. The models were solved with four factor inputs: labor, 

high-level tools, nominal tools, and low-level tools. For 

the second approach the models were solved using only labor 

as an input. 

with Banker 

This specification was basically for comparison 

and Kemerer [2] and some of the earlier 

literature that they cite. In the analysis that follows, the 

four input model is called the full model, while the single 

input model is called the reduced model. The scale estimates 

from the 37 linear programs are summarized in Tables 6 and 7, 

and the individual estimates are presented in Table 8. 

Table 6. Statistics by RTS Results for the Full Model 

Variable Mean 

IRS (n=24) 

SCALE .550 
Q 93.525 
K/L .189 

DRS (N=8) 

SCALE 1.260 
Q 394.125 
K/L .092 

CRS (N=5) 

SCALE 1.000 
Q 1047.800 
K/L .110 

St. Dev. 

.194 
83.463 

.251 

.307 
364.741 

.094 

.000 
873.246 

.128 

Minimum 

.213 
5.000 

.003 

1.005 
25.000 

.005 

1.000 
45.000 

.250 

Maximum 

.921 
300.000 

.857 

1.966 
1098.000 

.275 

1.000 
2000.000 

.057 



www.manaraa.com

91 

Table 7. Statistics by RTS Results for the Reduced Model 

Variable Mean 

IRS (n=7) 

SCALE .550 
Q 27.843 
K/L .531 

DRS (N=28) 

SCALE 22.172 
Q 364.382 
K/L .058 

CRS (N=2) 

SCALE 1.000 
Q 119.500 
K/L .250 

St .Dev. 

.137 
20.764 

.212 

31. 917 
520.626 

.063 

.000 
105.359 

.000 

Minimum 

.292 
5.000 

.250 

1.111 
10.000 

.003 

1.000 
45.000 

.250 

Maximum 

.667 
68.000 

.857 

138.889 
2000.000 

.275 

1.000 
194.000 

.250 

The results are quite different for the two models 

(which is expected), but in either case increasing returns 

are usually associated with the smaller projects, just as 

Banker and Kemerer hypothesized. 

The tools delay the onset of diminishing returns. The 

average size of projects exhibiting constant returns-to-scale 

is 119.5 when labor is the only productive input. The 

average size increases to 1047.8 when the tools are included 

in the production specification. 



www.manaraa.com

92 

Project 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

Table 8. Returns-to-Scale Results for the 
Linear Programming Model 

Q 

130.0 
400.0 

68.0 
75.0 
12.0 
20.0 
45.0 
75.0 

200.0 
147.0 

1098.0 
1500.0 
1500.0 

300.0 
22.0 
45.0 

114.5 
194.0 
102.0 
250.0 
212.0 
84.0 
41.2 
37.9 

200.0 
5.0 

194.0 
50.0 
20.0 
90.0 
10.0 

140.0 
30.0 

700.0 
25.0 

2000.0 
500.0 

Scale Estimate 
(Full Model) 

.583 
1.307 

.667 

.363 

.500 

.548 
1.000 

.294 

.504 

.682 
1.025 
1.000 
1.000 

.426 

.292 

.643 

.410 

.346 

.312 

.772 

.213 

.653 

.796 

.667 
1.005 

.557 
1.000 

.891 

.500 
1.966 

.921 
1.151 

.667 
1.216 
1.111 
1.000 
1.302 

Type Scale Estimate Type 
(Reduced Model) 

IRS 
DRS 
IRS 
IRS 
IRS 
IRS 
eRS 
IRS 
IRS 
IRS 
DRS 
eRS 
eRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
IRS 
DRS 
IRS 
eRS 
IRS 
IRS 
DRS 
IRS 
DRS 
IRS 
DRS 
DRS 
eRS 
DRS 

4.500 
8.861 

.667 
10.000 

.500 
1.667 
1.000 
8.667 

16.972 
8.889 

90.278 
20.833 

138.889 
15.000 

.292 
4.000 

24.611 
8.611 

24.917 
19.444 
25.000 

6.000 
1.667 

.667 
2.000 

.557 
1.000 
4.000 

.500 
3.333 
1.667 
6.000 

.667 
40.000 
1.111 

41.667 
82.222 

DRS 
DRS 
IRS 
DRS 
IRS 
DRS 
eRS 
DRS 
DRS 
DRS 
DRS 
DRS 
DRS 
DRS 
IRS 
DRS 
DRS 
DRS 
DRS 
DRS 
DRS 
DRS 
DRS 
IRS 
DRS 
IRS 
eRS 
DRS 
IRS 
DRS 
DRS 
DRS 
IRS 
DRS 
DRS 
DRS 
DRS 

The relationship between size and scale is further 

examined in Table 9 where Spearman's correlation coefficient 

(r) between size and scale is estimated for both models. The 

values in the parentheses are the probabilities of observing 



www.manaraa.com

93 

a larger estimated r (in absolute value) under the null 

hypothesis that the population correlation coefficient is 

zero. 

Table 9. Spearman Correlation Estimates 

Between Size and Scale 

Full Model 

r = .434 
(.0073) 

Reduced Model 

r = .843 
( .0001) 

We note that these results are not uniform 

over the complete data set. The projects were sorted on size 

and split into two groups. The small group contains the 18 

smallest projects, and the large group contains the 19 

largest projects. The correlation results for these data 

sets are presented in Table 10. 

Small 

Large 

Table 10. Spearman Correlation Estimates 

Between Size and Scale 

Full Model Reduced Model 

r = .037 r = .687 
(.8850) (.0016) 

r = .454 r = .586 
(.0510) (.0084) 



www.manaraa.com

94 

With the reduced model, the linear relationship between 

size and scale cannot be rejected, but in the presence of the 

productivity tools the relationship breaks down for the small 

projects. 

c. The Effects of Hardware 

None of the models examine the way that hardware affects 

scale. A more detailed model would include capital inputs 

that relate to hardware. These measures should consider 

peripheral devices as well as central processing units. In 

a production sense, if hardware were a limiting factor, it 

should create a conges~ion effect on the production process. 

One would expect these effects to show up more in the 

peripherals then in the processors, but we have no way to 

measure congestion effects in either case. 

However, we do have some information about hardware 

effects. In the survey [10), several questions were asked 

that give some insight into hardware effects. Each 

respondent was asked the following question: "Does your 

hardware limit what software can be employed?" If the answer 

to this question is affirmative, then this measure could be 

considered a proxy for congestion. A second question related 

to hardware classification. Each respondent was asked to 

classify hardware as satisfactory, obsolescent, or obsolete. 

In the survey glossary, obsolescent was defined as "becoming 

obsolete," and obsolete was defined as "outmoded." 

Only one respondent classified the hardware as obsolete, 

so for the analyses that follows, the obsolete and 

obsolescent data were combined. Table 11 provides a 

description of the sample according to the classification 

based on the two hardware questions. We note that 28 of the 

37 projects have consistent responses to the two questions in 

the sense that if hardware is obsolete, then there is a limit 

on software, or if hardware is satisfactory, then there is no 

limit on software. The observations in the off-diagonal 

classes are not necessarily inconsistent. For example, 



www.manaraa.com

95 

hardware could be considered obsolete but not a limiting 

factor in software development. We do, however, analyze the 

returns-to-scale results for both questions. This comparison 

is provided in Table 12. In general, there is no consistent 

pattern in the relationship between classifying observations 

based on returns-to-scale status and the classification by 

responses to hardware status questions. 

Table 11: Responses to Hardware Survey Questions 

Hardware Limit on 

Software 

Status of Hardware Yes No Total 

Obsolete/Obsolescent 9 2 11 

satisfactory 7 19 26 

Total 16 21 37 

Table 12. Returns-to-Scale Results and Hardware Status 

Number of Observations With 

IRS eRS DRS Average Scale 

Hardware Limit 

Yes 10 3 3 .79 
No 14 2 5 .74 

Hardware Status 

Obsolete 6 3 2 .85 
Satisfactory 18 2 6 .73 

The obvious extension is to determine which tools have 

larger 

output. 

marginal productivity with respect to potential 

This is accomplished by examining the dual variables 



www.manaraa.com

96 

from the 37 linear programs. Let Y" Y2, Y3, and Y4 represent 

the dual variables for labor and tool categories 1-3 

respectively. Also let U represent the dual variable for 

labor in the single input model. The descriptive information 

on the optimal dual variables is presented in Table 13. 

Table 13. Linear Programming Dual Variables 

Variable Mean st. Dev. Minimum Maximum 

Y, 1.48 1.47 .00 5.38 

Y2 19.87 43.14 .00 161.50 

Y3 13.53 30.12 .00 166.67 

Y4 56.68 82.27 .00 227.94 

U 5.38 .00 5.38 5.38 

The surprising characteristic of this table is the large 

marginal productivity of the higher-order tools. The marginal 

change in potential output for these tools is (on the 

average) larger. In our future research we are studying the 

characteristics of the projects for which additional higher

order tools generate large increases in potential output. 

V. CONCLUSIONS 

The results of this paper are two-fold. First, we confirm 

earlier research that suggests that increasing 

returns-to-scale are associated with small software 

development projects and decreasing returns-to-scale are 

associated with larger projects. Second, our results 

indicate that when software productivity tools are included 

in the model, the project size that is associated with the 

onset of diminishing returns is much larger. Our results 

also indicate that in general the higher level tools have 

larger marginal productivity with respect to potential 

output. 

VI. REFERENCES 



www.manaraa.com

97 

[1] Banker, R.D., Estimating Most Productive Scale Size 
Using Data Envelopment Analysis, European Journal 
of Operational Research, Vol. 17 (1984), 35-44. 

[2] Banker, R.D. and C.F. Kemerer, Scale Economies in New 
Software Development, IEEE Transactions on Software 
Engineering, Vol. 15, 1199-1205. 

[3] Boehm, Barry W. Software Engineering Economics. 
Englewood Cliffs: Prentice-Hall, 1981. 

[4] Boyd, G., Factor Intensity and Site Geology as 
Determinants of Returns-to-Scale in Coal Mining, 
Review of Economics and Statistics, Vol. 69 (1987), 
18-23. 

[5] Defense Logistics Agency. DoD Automated Resources 
Management System (ARMS), Users Guide, April, 1985. 

[6] Byrnes, P., R. Fare, and S. Grosskopf, Measuring 
Productive Efficiency: An Application to Illinois 
Strip Mines, Management Science, vol. 30 (1984), 
671-681. 

[7] Fare, R., Fundamentals of Production Theory. Berlin: 
Springer-Verlag,1988. 

[8] Fare, R., On Scaling Laws for Production Functions, 
Zeitschrift fur Operations Research, Vol. 17 
(1973), 195-205. 

[9] Ferguson, C.E., The Neoclassical Theory of Production 
and Distribution. Cambridge: Cambridge University 
Press, 1969. 

[10] Levitan, K.B., J. Salasin, T.P. Frazier, and B.N. 
Angier, Final Report on the Status of Software 
obsolescence in the DoD, P-2126, Institute for 
Defense Analyses, 1988. 

[11] Lovell, C.A.K. and P. Schmidt, A Comparison of 
Alternative Approaches to the Measurement of 
Productive Efficiency, In A. Dogramaci and R. 
Fare, Editors, Applications of Modern Production 
Theory: Efficiency and Productivity. Boston: 
Kluwer Academic Publishers, 1988. 

[ 12 ] Shephard, R. W., Theory of Cost and Production Functions. 
Princeton: Princeton University Press, 1970. 

[13] Zellner, A., J. Kmenta, and J. Dreze, Specification and 
Estimation of Cobb-Douglas Production Function 
Models, Econometrica, Vol. 34 (1966), 784-795. 



www.manaraa.com

AN ECONOMICS MODEL OF SOFTWARE REUSE 

INTRODUCTION 

R.D. Cruickshank and J.E. Gaffney, Jr. 

Software Productivity Consortium 

2214 Rock Hill Road 

Herndon, VA 22070 

Much attention has been paid to software reuse in recent years because it is recognized 

as a key means for obtaining higher productivity in the development of new software 

systems (Gaffney and Durek 1988; Gaffney and Durek 1991; and Gaffney 1989). Also, 

software reuse has provided the technical benefit of reduced error content and thus 

higher quantity. The primary economic benefit of software reuse is cost avoidance. 

Reuse of an existent software object generally costs much less than creating a new 

software object. 

The reuse economics model presented here should be regarded as a tool to aid in the 

exploration of the economic benefits of software reuse but not as an algorithm that covers 

all possible cases of reuse. The framework provided will aid the analyst and the project 

manager in making decisions about software reuse. The model covers various topics, in

cluding the effect of various strategies of investing in the creation of reusable software ob

jects (RSOs), the cost effects of reusing requirements or design in addition to the costs 

of reusing code, and the effects of reuse on software quality. 

OVERVIEW 

Software reuse can occur at many levels, ranging from the reuse of small granules of 

function (small software objects) within an application system to the reuse of large 

granules of software function (large software objects) across many application systems. 

For example, in an antiballistic missile system, the filtering routine in the signal pro

cessing function is a small granule while the location and tracking function is a large 

granule. The reuse methodology covers a wide range, from the ad hoc level of reuse 

of code to the systematic reuse of software based on an application domain. 

Reuse within an application system often takes place as the multiple use of a unit (or 

granule as above), such as a routine to implement a sine function or a finite impulse 

response filter, in a number of the major functions of that system. This type of reuse 

or multiple use of a software object has been common since FORTRAN began to be 

used. Multiple use within a system is facilitated in Ada through the use of the with and 

include constructs. 



www.manaraa.com

100 

The reuse economics model presented here focuses on the systematic reuse of RSOs 

having a relatively large amount of functionality. These RSOs are not typically used 

more than once in a given application system. Systematic reuse is concerned with defin

ing and establishing a domain of software systems, i.e., a family of software systems hav

ing similar descriptions (parnas 1976). Such a family is a set of systems with similar 

requirements that can be (or are) satisfied by a common architecture and represent a 

set of closely related design choices at the detailed level. A domain is a coherent busi

ness area and the application area corresponding to the family of systems. A domain 

model characterizes an application family. 

The benefits of establishing such a software domain are that software engineering and 

domain expertise are captured in a manageable form, and this knowledge can be used 

to produce families of similar application systems. As shown by Parnas, large (function

al scale) RSO reuse can be sequential (from one application system to another) or par

allel. In the latter case, a common set of RSOs ma¥ be used by several application 

systems which could be developed in parallel or sequentially. This type of reuse might 

actually be better termed multiple use. The Synthesis development methodology 

(Campbell 1990; Campbell, Faulk, and Weiss 1990) is concerned with this type of reuse. 

The principal economic benefits of software reuse are: 

• Lower development costs. 

• Higher software product quality due to multiple testing and error removal 

opportunities reused over a number of application systems. 

• Reduced development schedule due to a reduced amount of development 

work. 

• Lower maintenance costs due to lower levels of error creation. 

• Reduced life-cycle costs due to reduced development and maintenance costs. 

Systematic reuse views software maintenance as a series of redevelopments (i.e., 

incremental refinements) of application systems. 

SYSTEMATIC REUSE 

The reuse economics model presented here focuses on the systematic reuse of 

large-scale functional units. Systematic reuse in the reuse economics model is viewed 



www.manaraa.com

101 

as consisting of two principal activities: domain engineering and application engineer

ing. Domain engineering is the set of activities that are involv~ in creating RSOs that 

can be employed as a plurality of specific software systems or application systems. 

Application engineering is the set of activities that are involved in creating a specific 

application system. 

Domain engineering is regarded in the economic model presented here as covering the 

capital investment required to create a set of RSOs. Thus, domain engineering in

cludes the capital investment activities necessary to produce a family of application sys

tems. In domain engineering, the requirements for the family of software systems are 

identified, and the reusable structure to implement the family members is developed. 

Capital investment here means the initial investment in terms of effort to create the 

means to produce application systems before those application systems are actually 

produced. This investment may be made all at once for the entire domain investment, 

or it may be made incrementally over the life of the domain, i.e., as long as the domain 

is used to produce application systems. The effort spent in domain engineering is a capi

tal investment in creating the domain, including the domain definition and models, the 

application modeling language, and the reuse library. The term capital investment here 

does not imply any specific contractual arrangement. 

DOMAIN ENGINEERING 

Domain engineering is the capital investment process for creating the RSOs for a 

family of similar systems. It may be done up-front, all at once, or incrementally, over 

part or all of the time period. The family of application systems, which include some 

of the RSOs created by the domain engineering processes, is created in this same time 

period. Domain engineering includes all of the activities associated with identifying a 

target family of application systems, describing the variation among these systems, con

structing an adaptable design, and defining the methods for translating requirements 

into application systems composed of reusable components. 

Domain engineering may not occur in some modes of reuse. One such mode is the ad 

hoc reuse of software objects that were created for another system. Such objects can 

include requirements and/or design and/or test plans as well as code. Alternatively, 

although domain engineering may occur, its cost may not be a consideration to the 

application system developer because it is borne by someone else. An example of this 

is when a government agency provides the RSOs produced by one contractor to another 

contractor tasked with developing an application system. 



www.manaraa.com

102 

As shown subsequently, the costs of domain engineering may be amortized in different 
ways. The simplest way is to spread them across all of the application systems. Other 
methods include spreading some of them over one subset of the application systems 
or another part over another subset. The latter scheme is probably the more realistic. 
It is often difficult if not impossible to anticipate all of the possible variations that might 
occur across a set of application systems before any are built. In addition, it may be diffi
cult to obtain sufficient funding to cover all of the domain engineering required for the 
family of application systems. 

AwuCATION ENGINEERING 

Application engineering is the process of composing a particular application software 
system which is a member of the family of systems defined in the domain engineering 
process. Application engineering consists of composing the specific application system 
with RSOs and any new software needed, reengineering existent software required, and 
testing the system. Thus, application engineering is a process for producing quality soft
ware from reusable components. The application systems are generated from reusable 
components to implement all of the associated requirements definitions. 

Application engineering may be summarized as: 

• 'fransforming the customer's input into a requirements specification for the 
specific application system to be developed. 

• Generating new software objects specific to this application system, some of 
which may be reusable in other application systems and which may be entered 
into the reuse library. 

• Composing the application system by integrating the new software objects and 

the reusable software objects obtained from the reuse hbrary. The reuse eco
nomics model presented here considers any modified code to be in the new 
code category. 

THE BASIC ECONOMICS MODEL OF SOFTWARE REUSE 

This section presents the basic model of software reuse. It describes the basic model 
with up-front domain engineering. The version of the model which covers incremental 
domain engineering is described later. 



www.manaraa.com

103 

MODEL AssUMPrIONS 

The assumptions implicit in the reuse economics model are: 

• Costs may be measured in labor months (LM) or labor hours (LH) which can 

be converted to dollars as appropriate. 

• The true development cost for a new application system consists of the 

investment costs in domain engineering (apportioned over the expected num

ber of application systems to which it applies) plus the cost of application 

engineering specific to the given application system. 

It is important to note that a development organization under some 

circumstances may not take the cost of domain engineering into account. One 

such situation is when a government agency provides the results of domain en

gineering to a contractor developing new application system as govemment

furnished information. 

• A new application software system is composed of two categories of code, new 

and reused. 

• A variety of software objects, including requirements, design, code, test plans, 

and test steps, may be reusable. 

• The cost (in LM) of software development activities can be calculated as the 

product of a labor rate (LM divided by the size of the software product) and 

the size (in thousands of source statements) of the software product. 

Algebraically, this concept is represented by: 

LM = (LMIKSLOC)(KSLOC) 

REUSE EcONOMICS MODEL WITH UP.FRONT DOMAIN ENGINEERING 

The reuse economics model is designed to reflect the total costs of applying a reuse 

scheme. The model treats the cost of an application system as the cost of the capital 

investment in domain engineering apportioned over the expected N application sys

tems plus the cost of application engineering (the cost of creating that particular sys

tem). Thus, the cost of an application system, Cs, equals the prorated cost of domain 

engineering plus the cost of application engineering. Further, the cost of application 

engineering is the cost of the new plus the cost of the reused code in the new 

application system. Then: 



www.manaraa.com

104 

where: 

Co The total cost of domain engineering. 

CD The pro rata share domain engineering borne some by each of the N 
p application systems. 

CA The cost of an application system. 

CN The cost of the new code in the application system. 

CR The cost of the reused code in the application system. 

Now, each of the costs, CD, CN, and CR, is the product of a unit cost (LMIKSLOC) 

and an amount of code (KSLOC). Note that all costs are in LM. 

Then: 

Therefore the basic reuse cost equation is: 

where: 

CUS Unit cost of the application system. 

COE Unit cost of domain engineering. 

CVN Unit cost of new code developed for this application system. 

CVR Unit cost of reusing code from the reuse lIbrary in this application 
system. It represents the unit cost of reused code in the case where 
the lIbrary components can be instantiated directly into the 

application system with no modification. 

ST Expected value of the unduplicated size of the reuse library, i.e., the 
available, reusable functionality (source statements) in the library. 



www.manaraa.com

105 

SN Amount of new code in source statements developed for this 

application system. 

SR Amount of reused code (from the reuse ltbrary) incorporated into 

this application system in source statements. 

Ss Total size of the application system in source statements. 

Code sizes SN, SR, Ss, and Sr are nominally denominated in source statements, either 

physical or logical (see Gaffney and Cruickshank 1991a; Gaffney and Cruickshank 

1991b). These code sizes could be denominated in function points (Albrecht and Gaf

fney 1983) or their variations, such as feature points. The important thing is that 

consistent units of code size be employed. 

Let SN/SS = 1 - Rand SR1SS = R, where R is the proportion of reuse. 

Dividing through by Ss and rewriting: 

COB ST 
Cus = -- + CVN(1- R) + CVRR 

N Ss 

Now let Sr/Ss = K, the library relative capacity. Thus: 

C COB' ( ). us = -- K + CVN - CVN-CVR R 
N 

This is the basic reuse unit cost equation. It presumes a single reuse of SR units (SLOC, 

KSLOC, function points) in each of the N application systems, on the average. Thus, 

this equation is most applicable to systematic reuse of units of code having a relatively 

large amount of functionality. 

Some of the software developed for a given application system, of amount SN, might 

be deemed reusable on other application systems. Such software may be treated as 

resulting from a portion of an incremental domain engineering investment. 

Although not treated further here, the unit cost parameters (CVN, CVR, and CDE) can 

be considered to be time-variant. Thus, they can represent the effects of technology 

change (methodology and tools) over time. These parameters are considered to be 

time-invariant here. 

LIBRARY EFFICIENCY 

This section discusses some aspects of the structure of a reuse library from an economics 

point of view. 



www.manaraa.com

106 

A reuse bbnuy may be constructed so that there are a number of duplicate or alternative 

objects to cover the expected variation of a unit of function. Alternatively, there may 

be just object per function, but with the expected variation to be covered by the (application 

engineer's selection of the) values of one or more parameters to cover that variation. 

ST is the "unduplicated" size of the library or its capacity. There may well be alternate 

or duplicate implementation functionality in the reuse library (source code, as just 

stated), but that alternate or duplicate functionality will not add to the size of~. The 

case of alternative implementation of source code or all of the functionality of size ~ 

is covered in the cost model by an appropriate selection of the value of the unit cost 

parameter, enE. 

The factor K (= ~ / Ss), the bbnuy relative capacity. represents the average proportion 

(over the N application systems) of an application system in the family of systems that 

the library covers. Thus, if Ss represents the average application system size in the 

domain of interest, K is the upper bound for R, or R ..:::;,. K ..:::;,. 1. 

The efficiency of the library infrastructure, E, is the ratio of the amount of reused code 

in the application system to the available reusable code: 

where 0 s E s 1. 

The factor E indicates the extent to which the developer of a new application system 

has been able to make use of the library of reusable components in the new system. 

For example, the reuse hbrary may contain a Kalman filtering program and a navigation 

program that contains a Kalman filtering routine. If the Navigation program is selected 

(perhaps because it contains a Kalman, filtering routine) to be be used in an application 

system, then the efficiency of the hbrary for that specific application system is less than 

1.0 because the alternate (or duplicate) Kalman filtering program was not used. 

E is a measure of the efficiency of the systematic reuse application process. Normally, 

E is 1.0 or slightly less than 1.0, since application engineers on average are expected 

to reuse as much code as possible when composing an application system. 

IfKisassumed to be equal toR, orSR = ~(whichmeansE = 1), then the basic reuse 

unit cost equation can be rewritten as: 



www.manaraa.com

107 

COB ° )0 CUS = - R + CVN-(CVN-CVR R 
N 

Consolidating terms obtains: 

( COB) CUS = CVN - CVN-CVR - N R 

This equation is the standard reuse unit cost equation. 

SOME ExAMPLE APPLICATIONS OF THE MODEL 

This section provides three example applications of the basic reuse unit cost equation. 

The three examples are an Ada aerospace system, a real-time command and control 

(RTCC) application, and a management information system (MIS) application. These 

applications have the values COB, CVN, and CVR given in LMIKSLOC appropriate to 

a specific instance of domain and application engineering. The labor rates for CVN and 

CVR are derived from actual RTCC, MIS, and Ada development experience. The labor 

rates for COB are based on analysis of the functions included in domain engineering 

for the RTCC and MIS applications. In the case of the Ada aerospace application, a 

value of 1.5 for the ratio of COB to CVN is assumed. The RTCC labor rates (unit costs) 

are derived from experience based on a DOD-SID-2167 A model translated to a sys

tematic reuse model. The MIS labor rates (unit costs) are based on experience with 

SPEcrRUM* and with function points translated to the systematic reuse model 

derived above. 

Thble 1 shows the unit costs (in LMIKSLOC) of the two cost configurations. 

Thble 1. Cost Parameter Applications 

Application (LM/KSWC) 

Cost Parameters RTCC MIS Ada Aerospace 

COB 5.305 2.122 15.000 

CVN 2.072 1.012 10.000 

CVR 0.514 0.271 1.000 

Thus, the two parametric configurations of the systematic reuse unit cost equations 

are: 

RTCC: Cus = 5.~5 OK + 2.072 - 1.558°R 

* Trademark of Software Architecture and Engineering Inc. 



www.manaraa.com

108 

MIS: Cus = 2.122 e K + 1.012 - 0.741eR 
N 

15.000 e e 
Ada aerospace: Cus = ---""N K + 10.000 - 9.000 R 

Thble 2 shows the productivities (in SLOCILM) resulting from these configurations 
under the assumption that E = 1 or K = R. 

Thble 2. Reuse Economics Model Application Productivities 

(E = 1.0) , Application (SWC/LM) 

N R RTCC MIS Ada Aerospace 

2 0.7 352 809 112 

2 0.9 327 769 116 

3 0:7 451 1,011 139 

3 0.9 442 1,018 156 

4 0.7 524 1,156 158 

4 0.9 537 1,215 190 

5 0.7 580 1,265 172 

5 0.9 615 1,375 217 

10 0.7 739 1,557 211 

10 0.9 872 1,864 308 

15 0.7 814 1,687 227 

15 0.9 1,012 2,115 357 

Thble 2 illustrates the cost and productivity benefits to be gained from systematic reuse. 
Available data shows industry productivities for new software development (design 

through integration test) to be in the range of 80 to 180 SLOCILM (12.500 to 5.556 LMI 
KSLOC). The reuse productivities in Thble 2 show a considerable improvement over 
these performances. 

Also note that, where the value of R increases in Thble 2, the productivity actually 
decreases for certain values of N. This result is contrary to intuition, which would ex
pect increasing productivity to accompany increasing values of R. However, where the 
number of expected application systems is less than the break-even number of systems, 
decreasing productivity accompanies an increasing proportion of reuse. This phenomenon 
is discussed later, where the concept of break-even number of systems is introduced. 



www.manaraa.com

109 

SOME RECENT REUSE ExPERmNCE 

This section provides some data on recent reuse experience. Because no formal domain 
engineering was done in the composition of these systems, the value for COB was set at 
zero. The systems were done in sequence, with software objects being reused (and 
modified in some cases) from a prior system in creating a new software application system. 

MANAGEMENT INFORMATION SYSTEMS 

Allan Albrecht (Albrecht 1989) provided some worldwide reuse experience from mM 
in the development of MIS applications during the period of 1984 to 1988. The data 

is in the form of function point and productivity measurements on software created for 
internal mM applications such as billing and ordering. The applications were written 
in PUl. One function point (Albrecht and Gaffney 1983) is equivalent to about 80 lines 
of PLlI or 106 lines of COBOL. The 1988 reuse data analyzed here was determined 
from about 0.5M function points from more than 50 development sites, worldwide. 

Figure 1 presents this function point data on overall product productivity, new code 
productivity, and average percent reuse. The overall product productivity and the percent 
code reuse figures are for the years 1984 to 1988. The new code productivity ftgures are 
for 1986 to 1988; data for the 1984 to 1985 period was not available. Note that overall pro
ductivity is equal to total function points in the software system divided by total IM, while 
new code productivity is equal to function points of new code per IM for new function 
points. Thble 3 shows the data to which the histograms correspond. 

Thble 3. Productivity and Reuse Experience 

Overall Productivity (P) New Code Productivity Average Percent 
Year Function Points/LM (N) Function Points/LM Code Reuse (R) 

1984 22 - -
1985 20 - -
1986 25 14 31.5 
1987 32 18 40.0 
1988 49 23 67.2 

Thble 4 shows the partial correlations for the years 1986 to 1988 among the three 
variables shown in Thble 3 and the corresponding figures for l00r2, the percentage vari
ation of one variable "explained" by its relationship to the other and corrected for the 
third. Partial correlations indicate the correlations between two variables while holding 
the third constant, i.e., correcting for the third. 



www.manaraa.com

110 

oS 
!:: 
0 
~ 
.... 
0 

~ 
~ -!:: 
& 
§ 
.'= 

Co) 
!:: 

~ 

80 

70 

60 

50 

40 

30 

20 

10 

0 
1984 1985 1986 1987 1988 Year 

[:::J Overall productivity 
_ New code productivity 

11IIIIIIII Average percent reuse 

Figure 1. Worldwide Productivity and Reuse Experience 

Thble 4. Partial Correlations Among Variables, 1986 to 1988 

Variables 

Correlated Held Constant Correlation r lOOr 

P,R N 0.9982 98.36 

P,N R 0.9854 97.10 

R,N P -0.9736 94.79 

The strong partial correlations indicate that both the new code productivity (N) and 

the percent code reuse (R) had a strong influence on the increase in overall productiv

ity (P) in the years 1986 to 1988. Thble 5 shows the percent increase in each variable. 

There was an increasing degree of code reuse over the period shown, both from the 

reuse of code and from the new code. This was partially based on the reuse of existing 

requirements or design so that the increase in overall productivity was strongly 

associated with both types of reuse. 



www.manaraa.com

111 

Thble 5. Percent Increase of Variables, 1986 to 1988 

Variable Percent Increase 

P 96 

N 64 

R 113 

Figure 2 presents a plot of unit cost, CUS, in LM per function point multiplied by 100, 

versus the proportion of code reuse for the software development sites reporting in 

1988. The data was grouped into six ranges of reuse plus the point (0.0,5.41), as 

presented in Thble 6. 

Cus 

8 

7 X 

0 

~ 
~ e 
~ 

5 X -.S = Points on fit ~ 4 • 
. § x = Actual data 
ti 3 s:: 
~ 

X ... 
£ 2 
j 

1 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 R 

Proportion of Reuse 

Figure 2. Cost Per Product Unit for 1988 



www.manaraa.com

112 

Thble 6. 1988 Product Unit Costs Versus Proportion of Code Reuse 

Proportion of Reuse, R (LM/Function Point) Times 100 

0.0 5.41 

0.1 4.85 

0.3 7.19 

0.5 235 

0.7 1.63 

0.9 0.63 

The product moment sample correlation of Cus and R was found to be -0.832 (significant 
at the 5 percent level) which means that 69.16 percent of the variation in CUS, the overall 
product unit cost, was "explained" by its relationship with R, the proportion of reuse. The 
regression equation was: 

Cus = 6.188 - 6.027°R 

CVR should not be estimated from the relationship: 

i.e., using the relationship based on least squares regression as shown previously. Instead 
the statistical cost relationship: 

based on the general linear hypothesis of full rank can be used to calculate values for 

CVNandCVR· 

In order to get a more complete picture of the costs involved in reuse, as was stated 
earlier, the cost of reusable code creation and the cost of domain engineering must be 
determined (and, presumably, amortized over the set of users). 

Aerospace 

Figure 3 shows the total unit cost in LH/SLOC, Cus, plotted against the percent of 
code reuse, R, for eight aerospace applications. (The 0 percent data point is the average 
of five points, 0.6433 LH/SLOC.) A straight line has been fitted using linear regression, 
and the fitted equation is: 



www.manaraa.com

6 

Cus 
1.4 

1.2 

3 1 
~ g, 0.8 

~ 0.6 
...-

8 0.4 
g 
~ 0.2 

x 

Cus = 0.7850 - 0.OO9435°R 

x 

Percent of Code Reuse 

• = Points on fit 

x = Actual data 

x 

Figure 3. Unit Cost as a Linear Function of Percent Reuse 

113 

R 

The correlation of Cus and R is r = -0.785, which means that 100r2 = 61.54 percent 

of the variation in Cus is explained by its relationship with R. It is obvious from this 

data and from the fitted line that unit cost declines with an increasing proportion of 

reuse. 

Figure 4 shows the same data as in Figure 3 with a quadratic form fitted. The equation 

is: 

Cus = 0.920-0.0239·R + 0.OOO16114·R2 

Here the multiple correlation of Cus with Rand R2 is r = -0.846. Thus, the quadratic 

equation in R provides a better fit than shown in Figure 3 since only 100r2 = 71.6 per

cent of the variation in Cus is explained by its relationship to R and R 2 in that case. 

The goodness of this relationship suggests that, in some reuse regimes, the unit cost 

of software products decrease with increasing levels of reuse but then increase beyond 

a certain level of reuse. Perhaps the nature of the reuse process becomes less efficient 

beyond this point. 



www.manaraa.com

114 

CUS 

1.4 

X 
1.2 ,...... 

U 

3 1 r/) a _ 0.8 

'" 8 
'13 0.6 
:> 
~ 0.4 
Fi 

0.2 

0 
0 10 

X 

20 30 40 50 60 

Percent of Code Reuse 

70 

• = Points on fit 

x = Actual data 

X~_ .. 
X 

80 90 100 R 

Figure 4. Unit Cost as a Quadratic Function of Percent Reuse 

RETURN ON INVESTMENT 

This section defines the break-even number of systems for the case in which all of the 

domain engineering is done "up front" as assumed in the basic reuse unit cost equation. 

Break-Even Number of Systems 

Reuse pays off when the unit cost of an application system which includes reused soft

ware is less than or equal to the unit cost of an implementation in all new software. 

Therefore, the break-even number of systems, No, is the value ofN when Cus = CVN. 

Using the basic reuse unit cost equation previously developed: 

CDE 
CUS = CVN-(CVN-CVR)R + K

N 

and dividing through by CVN produces: 



www.manaraa.com

115 

The break-even point occurs when C = 1. Let the number of application systems 

required to break- even be No. Then: 

0= -(1- CVR)R + C~E K 
CYN CYN No 

N - COE 
0-

(CYN - CVR) °E 

where E = RIK is the efficiency in the use of the hbrary content, R = SR1SS and 
K = Sr,Ss, Sr ~Ss, R ~ K, and SR ~ Sr. Thble 7 shows the break-even number of 
systems for values of E and for two applications previously discussed. 

Thble 7. Break-Even Number of Systems 

E = R/K RTCC MIS Ada Aerospace 

0.7 4.86 4.09 2.39 

1.0 3.40 2.86 1.67 

The situation of decreasing productivity with increasing R (in Thble 2) occurred when 
the expected number of application systems, N, was less than No (for a particular appli
cation type). This phenomenon can be explained by a restatement of the basic unit cost 
system as: 

Cus = CVN + [- (CVN - CVR) + CDE/EN]R 

As R increases, Cus will increase as long as: 

That is, the labor rate Cus in lMIKSLOC with increasing R will increase, but productivity 
in SLOCILM will decrease as long as the above inequality is true. Solving this inequality 

forN: 

As long as the expected number of application systems is less than the break-even number 
of systems, productivity will decrease with increasing R. 



www.manaraa.com

116 

Since E = SRIST, if SR = ~, the amount of reuse is the maximum possible, and E = 1. 

In this case, K = R. When K = R, the basic reuse unit cost equation becomes: 

( COB )" Cus = CVN - CVN----CVR R 
N 

In this case, the break-even number of systems, No, is found by setting CUS = CVN, 

as before. Then: 

This is exactly the equation derived above but with E = 1. 

Figure 5 shows the RfCC cost model application data from lable 3 plotted as productivity 

in SLOCILM versus the number of application systems for proportions of reuse 

R = 0.7 and R = 0.9. This figure illustrates the phenomenon of higher reuse produc

ing lower productivity when the number of application systems is below the break-even 

point. The MIS data from Thble 3 could also be used to illustrate this phenomenon. 

1100 
1000 

"......, 900 

:3 800 
U 700 S 
~ 600 
~ 500 .s: 
"B 
::s 
'0 

£ 

1 3 

I 
I 
I No = 3.40 Break-Even Systems (E = 1.0) 

I 
I 
I 

5 7 9 11 

Number of Application Systems 

R = 0.7 

13 15 

Figure 5. Number of Application Systems Versus Productivity at Two Levels of Reuse 



www.manaraa.com

117 

Thble 7 shows that when E = 1.0, the break-even number of systems for the real-time 

cost model application is 3.40. Since E = RIK = 1.0, K = 0.9. Substituting these values 

into the basic unit cost equation for the real-time application: 

CUS = (5.305/3.40)(0.9) + 2.072 - 1.558(0.9) = 2.07 LMIKSLOC 

and 1,00012.07 = 483 SLOC/LM. Therefore the 3.40 break-even systems correspond 

to a productivity of 483 SLOC/LM and whenever N is greater than 3.40, reuse pays off. 

Note that in the example case of Ada aerospace systems, the break-even number of 

systems, also when E = 1.0, is 1.67. That is, for N = 2 systems, reuse pays off. 

Calculating Return on Investment 

As was stated previously, the cost of domain engineering activities represents an 

investment in the creation of RSOs to make possible a high degree of reuse over a fami

ly of application systems. The return on this investment is the difference in costs be

tween the cost of N application systems in which there is no reuse and the cost of N 

application systems in which there is an average reuse of R. IT the cost (in LMIKSLOC) 

of domain engineering is denoted as COE, the cost (in LMIKSLOC) of new software 

is denoted as CVN, and the cost of reused software (in LM/KSLOC) is denoted as CVR, 

then it can be shown that the percent return on investment (ROI) is: 

ROI = [(N)(E)(CVN - CVR)/COE - 1] 100 

where N is the number of application systems and E is the efficiency factor discussed 

above. 

The number of systems, No, at which the ROI is zero may be termed the break-even 

number of systems. It is determined by setting: 

((NO) (E) (CVN - CVR) I COE - 1) = 1 

Thus: 

N - CDB 
0-

(CVN-CVR)E 

This is the same equation for No derived above from a different point of view. 

Therefore the expression for ROI may be written as: 

ROI = (~o -1)100 



www.manaraa.com

118 

In the case of ROI, the emphasis is on determining when an investment in domain 

engineering pays off. This can be the case for relative productivity calculations as well. 

In addition, productivities relative to those of current industry practice may also be of 

interest, especially to those who wish to understand how systematic reuse compares 

with current practice. 

Thble 8 shows the comparison of return on investment for selected values of N. The 

negative values of percent return on investment are caused by the number of systems 

(N) being below the break-even number of systems. 

Thble 8. Percent Return on Investment (E = 1.0) 

N RTCC MIS 

2 -41.3 -30.2 

3 -11.9 4.7 

4 17.5 39.6 

5 46.9 74.S 

10 193.7 249.1 

15 340.6 423.6 

The equation for return on investment can be restated in terms of the following 

expression: 

N = (ROI + 1)( COB )(!) 
100 CVN - CVR E 

Figure 6 shows that, for both cost model applications, MIS and real-time (RI), the higher 

the library efficiency, the greater the return on investment. 

Suppose that a 20 percent return is the least return on investment that is acceptable, 

and suppose that a 50 percent return is considered the highest return that is possible. 

Let CDE = 5.305, CVN = 2.072, and CVR = 0.514 as with the RTCC example discussed 

earlier. Then NeE has the value 4.09 for the 20 percent return case and 5.11 for the 

50 percent return case. The relationship between Nand E then becomes as shown in 

Figure 7, and the 20 to 50 percent operating region is the area between the lines. Note 

that the cost of money was not taken into account in this calculation. A later section 

of this paper discusses cost of money. 



www.manaraa.com

1 

0.9 

~ 5 0.8 
'0 
IE 
~ 0.7 

~ 
.E 0.6 
~ 

0.5 

0.4 

0.3 

Figure 6. Number of Application Systems Versus Return on Investment 

Operating Region For 
20 - 50 percent Return 

~----~------+------r-----;------+-----~-----+------'I 

4 5 6 7 8 9 10 11 12 
Number of Application Systems 

Figure 7. Number of Application Systems Versus Library Efficiency 

REUSE ECONOMICS MODEL WITH INCREMENTAL DOMAIN ENGINEERING 

This section generalizes the basic reuse economics model presented earlier to cover 

the case in which the domain engineering is not done entirely at once, up front. 



www.manaraa.com

120 

The basic reuse economics model implies that all of the domain engineering is complete 

before the first application system is produced. For certain domains and environments this 

may be the case, but domain engineering does not necessarily have to be done in this fash

ion. Domain engineering may be done incrementally (i.e., piecewise), with some domain 

engineering being done in conjunction with more than one of the N application systems 

produced from the domain. 

Consider the Sr KSLOC of unduplicated code in the reuse hbrary that is to be used 
in one or more of the N application systems to be produced from the domain. Suppose 

that SrI KSLOC is used in system number 1, ST2 KSLOC is used with system number 

2, and so on. In general Sn will be used with system number i. Thus Os...Sns...ST for i 
= 1, ... ,N so that: 

Thus SrI is amortized over N application systems, ST2 is amortized over N - 1 systems, 
and in general Sn is amortized over N - (i - 1) systems. 

For the ith system out of N application systems, the unit cost, CUSi, is: 

which reduces to: 

This is the basic unit cost equation with incremental domain engineering for domain 

engineering occurring in more than one period of time. This equation assumes that the 

efficiency, E, is equal to one. Thus: 

Rj = i(S;:) 
m=l 

which is the maximum amount of reuse possible for system i. 



www.manaraa.com

121 

If SrI = Sr and if Sn = 0 for i = 2,3, ... ,N, then the basic reuse unit cost equation for 

incremental domain engineering reduces to: 

which is the same form as the basic unit cost equation with K = R, for the cost of 

up-front domain engineering. 

For the ith system to break-even, its cost must be less than or equal to that for the case 

in which the entire system of size Ss were to be made from entirely new code: 

If, as before, STl = Sr and Sn = 0 for i = 2,3, ... ,N the above equation reduces to: 

which is identical to the break-even number of systems calculated from the basic unit 

cost equation with E = 1. 

Similarly, for N systems as a whole to break-even: 

Now: 

N i 

II 
i=l m=l 

STm (Sn) ( Sn ) (N - (m - 1» = N N + (N - 1) (N _ 1) + ... + STN = Sn + ... + STN = ST 

and: 

N i 

I I STm = NSn + (N -l)Sn + (N -2)ST3 + ... + STN 
i=l m=l 



www.manaraa.com

122 

Therefore, for the N application systems in the domain to break-even overall: 

COB < (NSTl + (N - 1)S1'2 + ... + STN) 
(CVN - CVR) - ST 

and the break-even number of systems, No" is found by solving the above equation for 

N. Let: 

i=1 

Then the right side of the above equation becomes: 

Nal + (N -1)a2 + ... + (N -(N -l»aN = N-P 

where: 

N N 

P = 2)-1)"ai = 2>"ai-1 
i=1 ;=1 

Thus the break-even number of systems, No, is given by 

No = COB + P 
CVN-CVR 

where P is the incremental spending penalty. It is clear that doing domain engineering 

incrementally has the effect of increasing the number of systems required to 

break-even as compared with doing domain engineering all at once. 

CALCULATING RETURN ON INVESTMENT FOR THE INCREMENTAL DOMAIN ENGINEERING CASE 

Now, four cases of incremental funding of domain engineering investment are 

presented. The value of P, the additional number of application systems required for 

the break-even point to occur, is calculated for each case: 

Case 1: STl = ~ 

(NSTl) = N - 0 or P = 0 
ST ' 



www.manaraa.com

Case 2: STl = Sn = ST 
2 

(NSTl + (N - 1)ST2) = N _.! or P = 0.5 
ST 2' 

Case 3: Srl = Sn = ST3 = ST4 = ST 
4 

123 

(NSTl + (N -1)ST2 + (N - 2)ST3 + (N - 3)ST4) = 4N - (1 + 2 + 3) = N _ ~ orP = 15 
ST 4 2" 

Case 4: 

STl = (:5 )ST' ST2 = (~ )ST' STJ = (:5 )ST' ST4 = (:5 )~, STS = (1~ )ST 

(NSTl + (N - 1)ST2 + (N - 2)ST3 + (N - 3)ST4 + (N - 4)STS = N _ i or P = 1.33 
ST 3' 

Using these formulas, the cost per application for each of a family of five systems is 

computed for each of the four cases (regimes). The parametric values used for the four 
regimes are: Ss = 500 KSLOC, Sr = 450 KSLOC, CVN = 5 LMIKSLOC, CVR = 0.5 
LM/KSLOC, CDE = 7.5 LM/KSLOC, and E = 1.0. All investment and cost figures 
are in LM. 

In Thble 9, 12,500 LM is the total cost for five application systems without reuse. The 
cost of money is not included. Figures 8 through 11 illustrate the data in Thble 9. 



www.manaraa.com

124 

4000 

3000 
'" ..c: 
1:: 
0 
~ 2000 .... 
0 .g 

...:l 

1000 

0 
1 2 3 4 

Application System Number 

o Domain Engineering Investment 
• Cost Per System With All New Code 
1m Domain Engineering Cost Per System 
~ Application Engineering Cost Per System 

5 

Figure 8. Case 1: Domain Engineering Invested All at Once 

4000 

3000 
'" ..c: -f;:: 2000 0 
~ 
.... 
0 1000 .g 

...:l 

0 
1 2 3 

Application System Number 

o Domain Engineering Investment 
• Cost Per System With All New Code 
II1II Domain Engineering Cost Per System 
~ Application Engineering Cost Per System 

4 5 

Figure 9. Case 2: Domain Engineering Spread Equally Over Two Increments 



www.manaraa.com

4000 

'" 3000 ..c: -r:: 
0 

::E 2000 ... 
0 

~ 
~ 

1000 

0 
1 2 3 

Application System Number 

o Domain Engineering Investment 
• Cost Per System With AIl New Code 
II1II Domain Engineering Cost Per System 

UI Application Engineering Cost Per System 

125 

4 5 

Figure 10. Case 3: Domain Engineering Invested EquaIly Over Four Increments 

4000 

3000 
~ -r:: 2000 0 
::E ... 
0 

1000 ~ 
...:l 

0 
1 2 3 

Application System Number 

o Domain Engineering Investment 
• Cost Per System With AIl New Code 
IlIIII Domain Engineering Cost Per System 

r;;J Application Engineering Cost Per System 

4 5 

Figure 11. Case 4: Declining Domain Engineering Investment Over Five Increments 



www.manaraa.com

126 

Thble 9. Costs For Four Alternative Domain Engineering Investment Regimes 

Case 1 Case 2 Case 3 Case 4 

Cost Per 
s,stem 

Without Domain Domain Cost Domain Domain Cost 
Reuse and Engineering Cost Per Engineering Per Engineering Cost Per Engineering Per 

Domain Iny_ent System Iny_ent s,stem Iny_ent s,stem Inv_ent s,stem 
s,stem Engineering (LM) (LM) (LM) (LM) (LM) (LM) (LM) (LM) 

1 2,500 3,375 1,150 1,687.5 1,825.0 843.75 2,162.5 1,125 2,050 

2 2,500 - 1,1SO 1,687.5 1,234.4 843.75 1,867.2 900 1,735 

3 2,500 - 1,150 - 1,234.4 843.75 1,642.2 675 1,555 

4 2,500 - 1,150 - 1,234.4 843.75 1,557.8 450 1,510 

5 2,500 - 1,150 - 1,234.4 - 1,557.8 225 1,600 

TotaJs(l) 12,500 3,375 5,750 3,375 6,762.6 3,375 8,787.5 3,375 8,450 

Savings(2) 6750 5737.4 3718.5 3960 
(= 12500·5750) (= 12500 - 6762.6) (= 12500 - 8787.5) (= 12500 - 8450) 

Percent Return on 
Investment' = 200 170 110 120 
SaYings/3375 

RETURN ON INVESTMENT INCLUDING THE EFFECTS OF THE COST OF MONEY 

The previous section on incremental dom~in engineering did not consider the cost of 

money (COM), i.e., the cost of borrowing money to fund incremental domain engineer

ing efforts. The COM is the interest paid on borrowed funds, or the imputed interest, 

and is an element of cost that many business organizations should consider when 

making decisions about software reuse. 

The calculation of the COM involved in incremental domain engineering can be 

organized as an N -by-N array in which the columns correspond to domain engineering 

investment "streams," and the rows correspond to the costs for each of these streams 

for each of the application systems. A stream is an allocated flow of money for an incre

ment of domain engineering, COM plus principal, to finance domain engineering in

vestment for present and future (planned) application systems. For example, stream I 

begins at application system 1 and contains the full increment of domain engineering 

investment for application system 1 and partial increments of domain engineering in

vestment for the future systems. Each one of the future increments has a different val

ue since the financing for the second system is over a shorter time than the financing 

for the last planned system. In any cell of the N-by-N array, the COM is the product 

of the portion of investment borrowed for system j under investment stream i and the 

cost of borrowing for y years at p percent annually. 

The formula for the COM in any cell in the N-by-N array (actually only the lower 

triangular form is used) is: 



www.manaraa.com

127 

where: 

F 1 Amount of domain engineering investment borrowed for a system in 

investment stream i. 

F2 Proportion, COM. Example 0.36 means that 36 percent of Fl can 

comprise COM (ij), or Iij. 

This formula simplifies to: 

1· = a'-CT-[l- j-i ]-[1 + OOlp)Y-l] 
1,J 1 N-(i-l) . 

where: 

p Annual percent interest rate. 

y Number of years to which each investment increment is applicable. 

CT Total domain engineering investment. 

ai Proportion of CT = COE-ST applied in stream i (ai is defined in 
the section on incremental domain engineering). 

Tj Total COM for application system j, where: 

N 

Tj = 2)w andi s j 
i=l 

Two of the four cases, cases 1 and 4, discussed in the previous section are now used as 

examples of the calculation of the cost of money. 

Assume a family of five application systems from the domain in question and that a 

system can be produced from a domain in four years. Also assume that the current in

terest rate is eight percent per annum. As previously, all calculations are in LM, and 

the same parametric values as in the section on incremental domain engineering are 

used: Ss = 500 KSLOC, 5T = 450 KSLOC, COE = 7.5 LMIKSLOC, CVN = 5.0 LMI 

KSLOC, and CVR = 0.5 LM/KSLOC. 



www.manaraa.com

128 

Case 1 uses the data in Thble 9 to show that 1. 3,375 LM is borrowed for four years at 
eight percent to finance the up-front domain engineering effort as applied to applica
tion system 1. Since 675 LM (= 115 x 3,375) would be amortized by application system 

1, then 2,700 1M (= 3,375 - 675) would be amortized by system 2 and would be bor
rowed for 4 years (the period of time required for the development of system 2). Simi
larly, 20251M would be borrowed for the next 4 years, and so on. Note that these are 
the entries in Thble 10, which applies to case 1 for stream 1 only. This is because there 
is only one increment of domain engineering in this case, all up front. Thus, in this case, 
Sn = Sr and at = 1; ai = 0 and i = 2, 3, 4, 5. 

Thble 10. Cost of Money for Case 1 

Domain EngineerIDg lav_enlStnam 

Stream 1 Stream 2 Stnam3 Stnam4 StnamS 

Appl. Tolai 
s,.. COM PrIncipal COM Prlndpal COM Prladpal COM Prladpal COM Prlndpal COM 

1 1216.65 675 1216.65 

2 973.32 675 973.32 

3 729.99 675 729.99 

4 486.66 675 486.66 

5 243.33 675 243.33 

1btaI 3,375 3,649.95 

In case 4, there are five increments of domain engineering as shown in Thble 11 and 

below: 

Srt 1,125 0.333 x 3,375; at 0.333 

Sn 900 0.267 x 3,375; a2 0.267 

Sn 675 0.200 x 3,375; a3 0.200 

Sr4 450 0.133 x 3,375; R4 0.133 

Srs 225 0.067 x 3,375; as 0.067 

Thble 11. Cost of Money for Case 4 

Domain Eaglneerlng Inv_ent Stnam 

SCream 1 SCream 2 SCream 3 Stream 4 StnamS 

Appl. ToIaI 
s,.. COM Prlndpal COM Prlndpal COM Prlndpal COM Prlndpal COM Prindpal COM 

1 405.55 225 405.55 

2 324.44 225 324.44 225 648.88 

3 243.33 225 243.33 225 243.33 225 729.99 

4 162.22 225 162.22 225 162.22 225 162.22 225 648.88 

5 81.11 225 81.11 225 81.11 225 81.11 225 81.11 225 405.55 

lbtal 1,125 900 675 450 225 2,828.85 



www.manaraa.com

129 

Thble 12 summarizes the COM calculations. The costs have been rounded to the 

nearest 1M. 

Thble 12. Summary of Cost of Money Cases 

Case 1 Case 4 

Domain Domain 
Engineering Engineering 

Coot Per and and 
s,stem Domain Application Cost of Domain Application Cost of 
W1tbout Engineering Engineering Money Engineering Engineering Money 

Reuse and Investment Cost Per (Interest) Total Investment Cost Per (Interest) Total 
s,stem DE (LM) s,stem (LM) (LM) (LM) (LM) s,stem (LM) (LM) (LM) 

1 2,500 3,375 1,150 1,217 2,367 1,125 2,050 406 2,456 

2 2,500 - 1,150 973 2,123 900 1,735 649 2,384 

3 2,500 - 1,150 730 1,880 675 1,555 730 2,285 

4 2,500 - 1,150 487 1,637 450 1,510 649 2,159 

5 2,500 - 1,150 243 1,393 22S 1,600 406 2,006 

Thtals 12,50 3,375 5,750 3,650 9,400 3,375 8,450 2,480 11,29 

0 0 

Savings 3,100 (= 12,500 -9,400) 1,210 (= 12,500 - 11,290) 

Percent Return on 
Investment = Say. 92 36 

ingsl3,375 

Figures 12 and 13 illustrate the data in Thble 12. 

The least costly course of action is to borrow the entire cost of domain engineering at 

the beginning of the domain building effort (case 1), just as with the previous analysis 

of incremental domain engineering. The symmetry in the cost of money per system for 

case 4, with the high amount being for system 3, suggests that a concept similar to the 

economic lot size of manufacturing may apply. 

MODELING REUSE OF REQUIREMENTS AND DESIGN IN ADDITION TO 

CODE 

This section explicitly considers the reuse (or multiple use, as defined earlier) of RSOs 

other than code. The basic reuse economics model and its variant, which covers incre

mental domain engineering, deal with code reuse. Recall that the factor R stands for 

the proportion of code reuse in an application system of size Ss. Reusing a unit of code 

includes reusing the corresponding software objects from it was derived, the require

ments and design. This section addresses cases in which there is reuse of requirements 

and/or designs but not necessarily of code. 



www.manaraa.com

130 

~OO~--------------------------------------. 

E 
i:: 

3000 

a 2000 
~ 
6 
.0 

j 1000 

o 
-4 yrs- 1 -4 yrs- 2 -4 yrs- 3 -4 yrs- 4 -4 yrs- 5 

Application System Number 

D Domain Engineering Investment 
8 Domain Engineering Cost Per System 
o Application Engineering Cost Per System 

&l Cost of Money Per System 

Figure 12. Cost of Money-Domain Engineering is Invested All at Once (Case 1) 

~OO.------------------------------------------. 

3000 

.9 
§ 2000 
~ 
6 
.g 1000 
.....:I 

o I....-...J....-........ """""'----'-_ 

-4 yrs- 1 -4 yrs- 2 -4 yrs- 3 -4 yrs- 4 -4 yrs- 5 

Application System Number 

D Domain Engineering Investment 

rm Domain Engineering Cost Per System 
r.;a Application Engineering Cost Per System 

~ Cost of Money Per System 

Figure 13. Cost of Money-Declining Domain Engineering Investment Over 
Five Increments (Case 4) 



www.manaraa.com

131 

DERIVATION OF COST RELATIONSHIPS 

New code -can be created from new requirements and new design, from reused 

requirements and new design, or from reused requirements and reused design. Howev

er, reused code cannot be derived from either new requirements or new design. This 

statement of simple logic underlies the development of the mathematical relations 

provided in this section. 

The amount of reuse at later phases of development is upper-bounded by the amount 

of reuse at earlier phases. For example, the amount of design reuse cannot exceed the 

amount of requirements reuse (when both quantities are expressed in terms of equiva

lent SLOe or in terms of their respective proportions of total SLOe in the application 

software system). Now, if SRR is the source statement equivalent of reused require

ments, SRD is the source statement equivalent of reused design, and SR is the source 

statement count of reused code, then: 

SND + SRD = Ss 

Since reused code cannot be derived from either new requirements or new design, the 

following relationships hold: 

where RRR = SRRISs (the proportion of requirements reuse), RRD = SRD/SS (the 

proportion of design reuse), and R = SR1SS (the proportion of code [and of testing] 

reuse). 

Figure 14 graphically shows the relationships among new and reused objects in terms 

of size. 

Let the unit costs (in LM/KSLOe, where the KSLOe represents the equivalent source 

statements for the reused objects) for the new and reused objects be named as shown 

in Thble 13. 



www.manaraa.com

132 

Amount of New Amount of Reused 
~ SNR .L SRR • T Requirements 

Design SND .. .1 SRD ----. '1 

SN 
...... SR ~ , ..... Implementation (Code) 

Testing SN ..... SR ~ 
Ss 

Figure 14. New and Reused Objects at Different Levels 

Thble 13. Unit Costs of New and Reused Objects 

Unit Costs Unit Costs 
Phase/Activity New Objects (N) Reused Objects (R) 

Requirements (R) CVNR CVRR 

Design (D) CVND CVRD 

Implementation CVN1 CVRI 

(Code) (I) 

Testing (f) CVNT CVRT 

APPLICATION OF COST RELATIONSHIPS 

This section demonstrates the application of the cost relationships just developed. 

Suppose that the unit cost of new code, CVN, is 3.5 LMIKSLOC (286 SLOCILM) and 

that there is equal reuse of requirements, design, code, and testing. Let the breakdown 

of development effort be 20 percent for requirements, 30 percent for design, 20 percent 

for implementation (coding), and 30 percent for testing, so that the unit cost equation 

for new code in this case is expressed numerically as: 

this value of CVN is called CVNO. It is the base value of CVN. 

3.5 = 0.7 + 1.05 + 0.7 + 1.05 LMIKSLOC. 

Now suppose there is unequal reuse of requirements, design, and code. Suppose that 

R = 0.5, RRR = 0.7, and RRD = 0.7. Then: 

CVRR = (1- RRR)CVNR = (0.3)(0.7) = 0.210 



www.manaraa.com

133 

CVRO = (1- RRD)CVND = (0.3)(1.05) = 0.315 

Using the equation for CVN developed above: 

CVN = 1.75 + 1.05 1- 0.7 + 0.315 0.7 - 0.5 + 0.7 1- 0.7 + 0.210 0.7 - 0.5 
1 - 0.5 1- 0.5 1- 0.5 1 - 0.5 

CVN = 1.75 + 0.03 + 0.126 + 0.42 + 0.084 = 3.01 LMjKSLOC 

which is equivalent to 322 SLOCILM. Thus by reusing some requirements and design, 

the new code productivity has been increased from 286 to 322 SLOCILM. 

Overall, the total cost of application engineering is (as descnbed in the section entitled 

Reuse Economics Model With Up-Front Domain Engineering): 

New code can be derived from reused requirements or reused design, but reused code 

cannot be derived from new requirements or new design. Therefore the total cost of 

reused code is: 

where CVR is the unit cost of reusing requirements. The total cost of new code is (see 

Figure 14): 

CN = CVNSN = CVNRSNR +CVRR(SRR - SR)+CVNDSND+CVRD(SRD

SR) + (CVNI + CVNT)SN 

Recognize that the following relationships hold (from the previous equations): 

Substituting into the previous equation for CN and dividing through by (1- R) obtains: 

This is the general cost relation equation for new code under the condition of different 

proportions of various reused objects. Note that if RRR = RRD = R, that is, if all of 



www.manaraa.com

134 

the new code is derived from (corresponds to) new requirements and design, then 

CVN = CVNI + CVNT + CVND + CVNR, as would be expected. That is, the general 
cost relation for new code reduces that for new code when all of the new code is derived 

from new requirements and new design. 

GENERALIZATION OF LIBRARY EmcIENCY METIuc 

This section generalizes the concept of library efficiency to cover the case in which 

objects other than code are reused but the code may not be. The proportion of code 

reuse can be less than the proportion of requirements and/or design reuse. RRE is the 

effective (overall) reuse proportion. It is a weighted sum of the reuse proportions of 

requirements (RRR), design (RRD), and code (R). Therefore, the effective (overall) 

reuse proportion can be defined as: 

Let CVRI + CVRI' = CVRIT. Then, CVRR + CVRD + CVRIT = CVR. Therefore: 

CVRR + CVRD + CVRIT = 1 
CVR CVR CVR 

Thus, the equation for RRE can be written as: 

When RRR = RRD = R, the case of full (code) reuse (including the reuse of 

requirements and design), then RE = R, as it should. RE is a generalization of the 

proportion of reuse, R, and is used in the generalization of the basic unit cost equation 

as shown in the following subsections. Then SRE = RE. Ss. If RRR = RRD = R, then 

RE = R and SRE = SR. 

Now let K = ST/SS be as originally defined, the relative library capacity. Therefore 

lIbrary efficiency in the case of reuse of objects other than code is: 



www.manaraa.com

135 

This definition of library efficiency represents a generalization of the original definition 

that takes into account the reuse of objects when code is not necessarily reused. If 

RRR = RRD = R, then RE = R, and E = SR/Sr, as originally defined. 

GENERALIZATION OF N 

The factor N was defined earlier as the number of application systems in the family. 

It was used as the number of systems over which an up-front investment in domain en

gineering is amortized. It presumed code reuse and reuse of the corresponding require

ments and design. This section generalizes N to NE, the number of equivalent 

application systems for amortization purposes when the amount of code reused may be 

less than the amount of design or requirements (as considered in the previous section). 

The unit cost of domain engineering is: 

CDE = CDER + CDED + CDEIT 

where CDER is the unit cost for creating reusable requirements, CDED is the unit cost for 

creating reusable design, and CDEIT is the unit cost for creating reusing implementation 

(code) and test. The prorated unit cost is: 

And therefore: 

N - CDER • N + CDED • N + CDEIT • N E--- R -- D --
CDE CDE CDE 

where NE is the number of equivalent (to full) application systems considering the 

reuse of requirements and design objects as well as code objects, NR is the number of 

application systems over which the reused requirements are prorated, ND is the num

ber of systems over which the unit cost of the reused design is amortized, and N is the 

number of systems over which the unit cost of implementation and testing is amortized: 

If NR = ND = N, then, NE = N, as it should. The generalization of Nand R leads 

to a generalization of the basic unit cost equation as shown in the next subsection. 

GENERALIZATION OF BASIC UNIT COST EQUATION 

The basic unit cost equation with up-front domain engineering is generalized to take 

into account the reusable requirements and/or design without necessarily having 



www.manaraa.com

136 

corresponding code reuse. The approach is to substitute the factors RE and NE for R 

and N, respectively, and CVN is defined in its generalized form. Then: 

where CVN is defined in its generalized form: 

l-RRO RRO-R l-RRR RRR-R 
CVN = (CVNI + CYNT) + CVND l-R + CVRD l-R + CVNR~ + CVRR l-R 

FINAL VIEW 

Substantial savings can be realized in the development costs of application software 

systems when using a systematic reuse process as compared to either all new code de

velopment or casual reuse because of the higher development productivity that system

atic reuse provides. The very nature of the systematic reuse process requires software 

developers to consider not only the current version of the system being composed but 

future versions as well. This should have a large impact on the supportability of the 

system with its attendant cost consequences. 

Incremental funding of the domain engineering investment generally results in lower 

returns on investment than up-front funding but has the advantage of conserving capi

tal until required. It recognizes that it may not be pOSSIble to fully descnbe a domain 

before any of the systems in the domain family have been constructed. 

The reuse economics model not only demonstrates the economic impact of systematic 

reuse but also serves as a means to learn about applying a systematic reuse process. 

With such a model, the user can explore the costs and benefits of an investment in a 

domain. Such what-if explorations can help support business decisions. 

REFERENCES 

Albrecht, A.J. 
1989 

Albrecht, A.J., and 
J.E. Gaffney Jr. 
1983 

Personal communication. 

Software Function, Source Lines of Code, 
Development Effort Prediction: A Software Science 
Validation. IEEE Transactions on Software Engineering 
SE-9. 



www.manaraa.com

Campbell, G.H. 
1990 

Campbell, G.H., S.R. 
Faulk, and D.M. Weiss 
1990 

Gaffney, J.E. Jr. 
1989 

Gaffney, J.E. Jr., and 
R.D. Cruickshank 
1991a 

1991b 

Gaffney, J.E. Jr., and 
T. Durek 
1988 

1991 

Parnas, D. 
1976 

137 

Synthesis Reference Model Version 01.00.01. 
SYNTHESIS_ REF _MODEL-90047-N. Herndon, 
Virginia: Software Productivity Consortium. 

Introduction to Synthesis. Version 01.00.01 INTRO_ 
SYNTHESIS_PROCESS-90019-N. Herndon, 
Virginia: Software Productivity Consortium. 

An Economics Foundation for Software Reuse Version 
1.0, SW-REUSE-ECONOM-89040-N. Herndon, 
VIrginia: Software Productivity Consortium. 
Presented at the AIAA Computers In Aerospace 
Conference, Monterey, California, October 1989. 

Code Counting Rules and Category 
Definitions/Relationships Version 02.00.04, 
CODE_COUNT_RULES-90010-N. Herndon, 
Virginia: Software Productivity Consortium. 

The Measurement of Software Product Size: New and 
Reused Code. Third Annual Oregon Workshop on 
Software Metrics, Silver Falls, OR. Th be published in a 
forthcoming issue of Software Engineering: Tools, 
Techniques, and Practice. 

Software Reuse, Key to Enhanced Productivity: Some 
Quantitative Models Version 1.0, SPC-TR-88-01S. 
Herndon, VIrginia: Software Productivity Consortium. 

Software Reuse-Key to Enhanced Productivity: Some 
Quantitative Models. The Economics of Information 
Systems and Software, pp. 204-219. Edited by R. Vergard. 
Oxford, England: Butterworth-Heinemann. 

Design of Program Families. IEEE Transactions on 
Software Engineering. 2, 1:1. 



www.manaraa.com

EXPERIENCE WITH AN INCREMENTAL ADA DEVELOPMENT 

U'I u;~RMS OF PROGRESS MEASUREMENT, BUILT-IN QUALITY, AND 

PRODUCTIVITY 

Donald H ANDRES, TRW Systems Integration Group, Redondo Beach, CA 

L/Col. Paul E. HEARTQUIST, USAF/Electronic Systems Center, Hanscom AFB, MA 

Gerard R. LaCROIX, MITRE Corporation, Bedford, MA 

29 - 30 April 1991 

EXECUTIVE SUMMARY 

An incremental development and test process is being successfully used in the 

implementation of the Command Center Processing and Display System Replacement 

(CCPDS-R) Program. This program is a large U.S. Air Force Ada application 

comprised of several subsystems each with multiple increments of capability. The frrst 

subsystem delivery was made to the Air Force in December 1990 and consisted of over 

280,000 Ada Source Lines of Code, operator display consoles, and data processing 

equipment. 

Experience to date indicates that both the Government procuring agency 

(Electronic Systems Division with support from the MITRE Corporation) and the 

developing contractor (fRW Systems Integration Group) have had better-than-average 

visibility into true software development progress. This visibility is attributable to 

several factors discussed in this paper including prototyping, the use of design 

walkthroughs, formal demonstrations of functionality, early development of the 

architectural and system service software base, delivery of operational capability via 

series of tested software Builds, and the monthly application of software management 

metrics. 



www.manaraa.com

140 

The software that has been demonstrated and delivered to date has been 

exceptionally reliable. Numerous failure-free demonstrations have been given to 

interested parties for over a year and the delivered software, although not completely 

tested, is being regularly used without incident by the Government for training and 

performance measurement purposes. Factors behind this built-in quality are addressed; 

namely, development of software tools to reduce error-prone coding, use of a message

based design to standardize task-to-task communications, early checkout of interfaces, 

and continuity of software staff. 

Lastly, reasons why the program is achieving and maintaining software 

productivity significantly higher than industry averages are discussed. These include 

reuse of design and code from subsystem to subsystem; choice of a hardware 

architecture with virtually unlimited growth potential; and standardization of procedures 

for writing applications software and handling task-to-task interfaces, in addition to early 

integration and staff continuity. 

General "lessons learned" and recommendations for the technical management of 

incremental Ada development projects are also provided. 

BACKGROUND 

The U.S. Air Force is currently pursuing several development efforts to upgrade 

the tactical warning and attack assessment capabilities of the United States. The 

elements comprising these capabilities are commonly referred to as the Integrated 

Tactical Warning and Attack Assessment (ITW/AA) System. 

A major component of the ITW/AA System is the Command Center Processing 

and Display System Replacement (CCPDS-R) Program. This component is 

responsible for processing data from ground and space-based radars to determine whether 

launches of ballistic missiles constitute a threat to U.S. interests. 



www.manaraa.com

141 

CCPDS·R consists of three subsystems (see Figure 1): 

a. A ballistic missile warning subsystem which makes the actual assessment of 

threat, 

b. A missile warning display subsystem with tenninals deployed worldwide, and 

c. A management/survival subsystem to protect the U.S. bomber force. 

CHEYENNE MT. AFB 

SENSOR DATA MISSILE WARNING 

~ 
BALLISTIC MISSILE DISPLAY 

WARNING SUBSYSTEM SUBSYSTEM NMCC/ANMCC 
(PRIME) 

I I MISSILE WARNING 
DISPLAY 

I I - SUBSYSTEM 

MISSILE WARNING DATA • • 
OFFUTTAFB • 

NUCLEAR-CAPABlE a NC. 

MISSILE WARNING 

~ 
BALLISTIC MISSILE MISSILE WARNING r-- DISPLAY 

WARNING SUBSYSTEM DISPLAY - r-- SUBSYSTEM 

SENSOR DATA 

(AL TERNA TE) SUBSYSTEM 

I 
HQ.SAC I 

BOMBER FORCE MISSILE WARNING 

MANAGEMENT/SURVIVAl ~ DISPLAY - f--
SUBSYSTEM SUBSYSTEM 

BOMBER AlERTS ..... ---

Figure 1. CCPDS·R System Overview 

SYSTEM OVERVIEW 

The CCPDS·R is a large Ada software application, on the order of one million 

source lines of code (1M SLOC), implemented on Digital Equipment Corporation VAX 

computers. One of the three CCPDS·R subsystems, i.e., the Missile Warning 

Subsystem, consists of 340,000 SLOC installed on a V AX 6520 Mission Processor. 



www.manaraa.com

142 

This processor contains the communications processing, missile warning algorithms, 

and databases necessary to drive operational displays located at Cheyenne Mt., CO; 

Offutt AFB, NE; and selected remote locations throughout the world. 

The CCPDS-R hardware/software architecture employs a layered design in which 

hardware dependencies are confined to a small subset of the operational code. For 

example for the Missile Warning Subsystem, the mission processing hardware 

dependencies are contained in about 10,000 source lines of code (10 K SLOC) out of a 

total developed software size of 340 K SLOC. In addition, the more difficult Ada 

language constructs are isolated away from the application software thereby reducing 

both the number and severity of coding errors in the applications, and enhancing overall 

software developer productivity. 

MEASUREMENT OF DEVELOPMENT PROGRESS 

Visibility is a key to determining the real status of software development efforts. 

Visibility becomes even more important when the software being developed is large, 

complex, and time-critical, as is the case for CCPDS-R. 

The Government procuring agency (Electronic Systems Division with support 

from the MITRE Corporation) and the developing contractor (TRW Systems Integration 

Group) have instituted several innovative techniques for determining software 

development progress on CCPDS-R. These include: 

a. Incorporation of working prototype code into the operational software, 

b. Design walkthroughs, 

c. Early development of architectural software, 



www.manaraa.com

143 

d Incremental delivery of operational capabilities via software "builds" 

e. Fonnal demonstrations of delivered capabilities, and 

f. Monthly assessment of progress via software management metrics. 

The CCPDS-R Program employs a prototyping and build approach (see Figure 

2) which, in essence, breaks the overall subsystem development cycle into a series of 

smaller, more-easily manageable, developments. This approach is characterized by three 

milestones: 

a. A preliminary design walkthrough (PDW) for each build at which the top

level software design is reviewed along with the ability of prototype code and Ada 

Design Language (ADL) to compile, link, and execute. 

b. A critical design walkthrough (CDW) to review the detailed design of each 

build and its proper operation. 

c. A fonnal demonstration of each build which focuses on operational 

capability and is subject to pass/fail criteria 

Both the Government and the contractor are active participants in these three activities. 

Under the prototyping and build approach, CCPDS-R software development 

began significantly earlier than would have been the case under a more traditional 

software development. By the time of Critical Design Review (CDR) of the software 

for the Missile Warning Subsystem, about 3/4 of the code had been designed coded, 

integrated, and informally tested. The earliest software developed consisted of the 

architectural and system service software base upon which all subsequent applications 

software would depend. Thus, integration, which is the most risky part of software 

development, has been an early and continuing effort on the CCPDS-R Program. 



www.manaraa.com

144 

PROTOlYPES 

• CRITICAL THREADS ~ 
• USI 

PROTOTYPING 
PROCESS 

DEMO DEMO 

POW COW BUILD PROCESS 
TU 

TOP·LEVEL 
DETAILED DESIGN 

DE 
RNOVERFOR 
MONSTRATION 

FORMAL TESTS AND 

• REVIEW OF COMPONENT SPECS 

• FOCUS ON PROGRAM STRUCTURE 

• DEMO BASIC ABILITY TO COMPILE, 
LINK, & EXECUTE 

DESIGN CODE INTEGRATE 
WITH PREVIOUS 

BUILD 
~ 

• REVIEW OF COMPONENT AND 
UNIT SPECS AND BODIES 

• DEMO DETAILED OPERATION 

r---

Figure 2. CCPDS-R Prototyping and Build Approach 

Traditionally, integration does not begin until after CDR. As a result, integration 

problems tend to surface late in the development when their effects are magnified by the 

pressures of schedule and the contention for resources. 

The CCPDS-R Program has capitalized on the numerous opportunities available 

to measure progress. To date, these have included about 10 fonnal reviews, 6 PDWs, 6 

CDWs, and 7 demonstrations. In addition, the Government and TRW management 

receive monthly quantitative reports of progress, commonly called software management 

metrics. Actual vs. planned progress is tracked with regards to software staffing, 

software size, development progress, and test progress. Separate accounting is 

maintained for the % of the software which has been designed, coded, unit tested, 

documented, integrated, component tested, and string tested, Similar tracks are kept for 

test procedures completed and requirements verified. Cumulative plots of open and 

closed software problem reports and software documentation problem reports are 



www.manaraa.com

145 

generated monthly. The status of all action items resulting from formal meetings is 

also updated monthly along with plots of cost and schedule variances. 

SOFfW ARE RELIABILITY 

One measure of the built-in quality of software is its reliability, i.e., mean-time 

between critical failures. The CCPDS-R software, even though still in the midst of 

development, is experiencing a reliability in excess of 10,000 hours. 

This reliability is attributable to the use tools to generate code that would 

otherwise be labor-intensive, repetitive, and hence prone to human error; the use of a 

message-based design which relieves the applications developers from the burden of 

creating software for task-to-task communications; early integration of the 

architectural/system service software and applications shells which allows for the early 

discovery and correction of errors; and continuity of knowledgeable staff, primarily 

within the contractor organization but also on the Government acquisition team. 

For example, the Missile Warning Subsystem uses a variety of tools to generate 

compilable Ada code from pseudo-English data inputs. The principal tools consist of 

about 22 K SLOC which are used to generate about 233 K SLOC of operational code - -

an expansion factor in excess of 10 to 1. Verifying the proper operation of the tool 

code is easier, less time-consuming and less error-prone than manual verification of the 

tool-generated code. On the CCPDS-R Program, approximately 38% of the code is 

being generated by means of tools. 

A second factor underlying CCPDS-R software reliability is the message-based 

design which incorporates a software architecture skeleton consisting of reusable node 

managers, process executives, and task executives. These permit applications 

developers to concentrate on the functionality associated with their respective modules 



www.manaraa.com

146 

without having to know the inner workings of the software infrastructure and the 

mechanisms by which Ada tasks communicate with other Ada tasks. 

The third and fourth factors behind CCPDS-R's software reliability are the early 

integration of software components with resultant early identification of interface 

incompatibilities, and staff continuity which provides the knowledge base from which 

problems can be addressed. The early development of the architectural/system service 

software has insured its repeated use by the applications programmers and hence 

contributed to its inherent reliability. 

PRODUCTIVITY 

The CCPDS-R Program is experiencing software productivity in the range of 4.1 

to 10.6 Ada SLOC per staff-day. This range is a function of how the code is counted 

and is complicated by differences in the amount of effort required to produce new code, 

modify previously-developed code, reuse old code, and generate new code using 

automated tools. The computation is further obfuscated by the lack of an industry 

standard for counting Ada source lines of code. The approach taken on the CCPDS-R 

Program to compute productivity follows (see Figure 3): 

a. Weight new code and modified code equally, 

b. Weight reused and tool-generated code at 3/10 and 6/10 of the effort required 

to generate new code, respectively, 

c. Compute SLOC by adding carriage returns in Ada Specifications and semi

colons in Ada Bodies; do not count "Comment" lines. 

Applying this approach to the CCPDS-R code yields a weighted software productivity 

of 7.3 Ada SLOC per staff-day which is about 40% higher than the upper end of the 

usually quoted industry range of 3 to 5 Ada SLOC per staff-day. 



www.manaraa.com

15~ ____________________________ _ 

12r------,~---------------------
ADA 9 
SLOC 
PER 

STAFF-DAY 6 

3 

o 
TOTALCOOE EQUIVALENT NEW CODE ONLY 

TOTAL CODE = NEWIMODIFIED + REUSED + TOOL-GENERATED 
EQUIVALENT = NEWIMODIFIED +.3· REUSED + .6· TOOL-GENERATED 
NEW CODE ONLY = NEWIMODIFIED 

SLOC = SPECIFICATION CARRIAGE RETURNS + BODY SEMI-COLONS 
(NO COMMENTS) 

147 

NEWIMODIFIED 365K 
REUSED 220K 

TOOL-GENERATED ~ 
TOTAL 940K 

Figure 3. CCPDS-R Software Productivity 

The major factors contributing to this relatively higher productivity are the reuse 

of design, code, and people; and the use of tools to generate code, previously discussed. 

In fact, on the CCPDS-R Program 23% of the code is being reused from one subsystem 

to the next out of the nearly 1M SLOC being developed. People reuse has taken the 

form of a stable, highly knowledgeable, software architect team augmented by bright 

applications developers organized into manageable entities. The team of software 

architects has been responsible for the more difficult software code, i.e., the 

architectural/system service software. This code effectively isolates the applications 

developers from the complex Ada constructs of tasking, rendezvous, time-slicing, 

prioritization, etc. The net result is code appropriate to the technical abilities of the 

individuals and hence reduced errors. 

A second but less obvious contributor to productivity is the availability of a 

processor family that is compatible with the developed software. On several occasions 

during the development of the CCPDS-R System, as performance margins were reached, 

the Government and contractor team was faced with the decision on how to best fit the 



www.manaraa.com

148 

remaining software while still satisfying performance constraints, such as maximum 

allowed processor utilization. The choices were two-fold: tune the software to make it 

more efficient or upgrade the processors. Tuning the software is labor-intensive and 

tends to reduce productivity. Nevertheless, on a few occasions the software was tuned to 

speed response times and increase throughput. On most occasions, however, the 

processors were upgraded because the software could be ported with virtually no changes 

and hence no expense of labor. Also, the upgraded processors could be purchased at 

about the same cost as the originally planned processors. Hence, the upgrades could be 

made with no corresponding increases in overall CCPDS-R Program costs. 

A third factor in CCPDS-R productivity has been the use by the developers of 

standard development procedures. These have included standard ways for developers to 

interface their applications modules with the reusable architectural software components, 

and standard ways for writing applications code using templates at both the application 

"process" and "task" levels. Stated another way, all of the applications developers are 

developing code in the same ways. This has resulted not only in fewer errors (3.5 per 

K SLOC vs. 5 - 12 per K SLOC industry experience) but also in high maintainability. 

The result is less labor to fix problems and hence higher productivity. On the CCPDS

R Program, about 2f3 of the software errors have required less than one day to fix:. 

The fourth and fifth factors behind CCPDS-R's productivity figures were also 

discussed previously as factors behind the reliability of the software. They are early 

integration and staff continuity. In addition to improving the quality of the software, 

these factors contribute to the overall efficiency of the software development process and 

are therefore positive influences on productivity. 

LESSONS LEARNED 

When comparing the CCPDS-R Program to other programs which have had 

successful software developments (such as the Berlin Radar Program), certain 



www.manaraa.com

149 

similarities stand ouL These include the quality of the documentation and test program, 

the close professional team relationship between the contractor and Government teams, 

knowledge by both of the job to be done and how to go about doing it, and continuity 

of key personnel. These are the characteristics of a good and well-run program. 

However, on the CCPDS-R Program three additional factors contribute to make it an 

exceptional program: 

a. The existence of a Concept Defmition Phase during which many of the up

front system engineering IIade studies were conducted. 

b. The use of a flexible architecture characterized by reusable architectural 

components, standard task-to-task communications, and standard applications process 

and task templates. 

c. The use of a Software Development Process model consisting of operational 

code prototypes, design walkthroughs, builds, and formal demonslIations. 

In conclusion, the CCPDS-R software development approach is working. 

Performance, schedule, and cost objectives are being met. The success enjoyed to date 

has been due to a combination of the capabilities provided by Ada technology and the 

application of previous lessons learned. This software development approach has 

resulted in an environment characterized by a high degree of visibility into true software 

development progress, high software reliability, and high software productivity. As 

such the CCPDS-R Program is a model for others to follow. 



www.manaraa.com

Recognizing Patterns for Software Development 
Prediction and Evaluation* 

Lionel C. Briand, Victor R. Basili and William M. Thomas 
Department of Computer Science 

University of Maryland 
College Park, MD 20742 

1 Introduction 

Managing a large scale software development requires the use of quantitative mod
els to provide insight and support control based upon historical data from simi
lar projects. Basili introduces a paradigm of measurement based, improvement
oriented software development, called the Improvement Paradigm [1]. This paradigm 
provides an experimental view of the software activities with a focus on learning 
and improvement. This implies the need for quantitative approaches for the fol
lowing uses: 

• to build models of the software process, product, and other forms of experi
ence (e.g., effort, schedule, and reliability) for the purpose of prediction. 

• to recognize and quantify the influential factors (e.g. personnel capability, 
storage constraints) on various issues of interest (e.g. productivity and qual
ity) for the purpose of understanding and monitoring the development. 

• to evaluate software products and processes from different perspectives (e.g. 
productivity, fault rate) by comparing them with projects with similar char
acteristics. 

• to understand what we can and cannot predict and control so we can monitor 
it more carefully. 

Classical techniques for data analysis have limitations when used on software 
engineering data. In this paper we present a new data analysis technique, based 
on pattern recognition principles, designed to overcome some o(these limitations. 

The paper is organized as follows. In Section 2 of this paper, we discuss the 
needs and the constraints in building effective models for the software development 

"This work was supported in part by NASA grant NSG 5123 and by AFOSR 90-0031 



www.manaraa.com

152 

processes. We present a new approach for analyzing software engineering data in 
Section 3, called Optimized Set Reduction (OSR), that overcomes many of the 
problems associated with traditional techniques. In Section 4, experimental results 
are provided to demonstrate the effectiveness of the approach for the particular 
application of cost estimation modeling. Section 5 identifies major conclusions. 

2 Requirements for an Effective Data Analysis 
Procedure 

Based upon constraints associated with the data and the analysis procedures, we 
generate a set of requirements for model building approaches. In the text that 
follows, we will refer the variable to be assessed as the "Dependent Variable" 
(DV) (e.g. productivity, fault rate) and the variables explaining the phenomenon 
as "Independent Variables" (IVs) (e.g. personnel skills, product complexity). 

2.1 Constraints Related to Software Engineering Data 

Empirical model building in Software Engineering is faced with the following dif
ficulties: 

• C1: There is no theory proven to be effective in any environment that would 
give a formal relationship among measured metrics in the development pro
cess. Therefore the capabilities of classical statistical approaches seem very 
limited. 

• C2: There is little evidence to support assumptions about the probability 
density distributions, with respect to the dependent and independent vari
ables of interest. 

• C3 : The sample size is usually small relative to the requirements of the 
classical statistical techniques, the quality of the data collected, and the 
number of significant independent variables. This is due to the nature of 
the studied objects in software engineering (e.g. software system, module, 
change, defect ... ). 

• C4 : "Software engineering modelers" have to deal with missing, interde
pendent and non-relevant independent variables: This is due to a lack of 
understanding of the software development process. 

• C5 : Data defined on both continuous (i.e. ratio, interval) and discrete (i.e. 
nominal, ordinal) ranges have to be handled. Collecting data in a production 
environment is a difficult task and discrete data collection is often performed 
to facilitate the measurement process. Also, the nature of some of the data 
may be discrete. 



www.manaraa.com

153 

2.2 Requirements to Alleviate These Constraints 

Matching the constraints, we can define requirements for effective data analysis 
procedures: 

• Rl [matches C1 , C2]: The data analysis procedure should avoid assumptions 
about the relationships between the variables regarding the probability den
sity distribution on the IV and DV ranges. 

• R2 [C3 , C4]: A mechanism is needed to evaluate accuracy for each performed 
estimation. The variations of accuracy lie in a large range depending on the 
object to be assessed. For example, you may want to assess a software project 
from the point of view of productivity. 

C3 The amount of available relevant data may differ according to the char
acteristics of the project to be assessed. For example, you may have 
more data with respect to data processing business applications than 
with respect to real time systems. In small samples, this phenomenon 
can have significant consequences. 

C4 The performed data collection may be more suitable to certain kinds 
of objects than others. For example, objectively measuring time con
straints for real time systems may be difficult and therefore may intro
duce more uncertainty in the assessment. 

• R3 [C4 ]: The data analysis procedure must be as robust as possible to miss
ing, non-relevant, interdependent IVs and outliers. Then, some procedures 
should be available in order to detect and alleviate the effects related to these 
kinds of disturbances in the data set. 

• R4 [Cs]: The data analysis procedure must be able to easily handle both 
discrete and continuous metrics without biasing the obtained results. 

3 A Pattern Recognition Approach for Analyz
ing Data 

Due to the difficulties associated with software engineering data, new techniques 
have been investigated to support modeling activities. For example, Selby and 
Porter have advocated the use of automatically generated tree-structured classifiers 
as a mechanism for identifying high-risk portions of the software product [8]. A 
comparison of the strengths and weakness of this and regression based techniques 
can be found in [3]. Our goal is to develop a data analysis procedure based upon 
pattern recognition principles that is intended to fulfill, to a certain extent, the 
previously described requirements for effective data analysis. This procedure and 
its main supporting principles are described in the following sections. 



www.manaraa.com

154 

3.1 Description of the Technique 

The goal of the technique is the recognition of patterns in a data set. These 
patterns are used as a basis for understanding and assessing the development 
process, product and environment. 

3.1.1 The Basic Concepts and Terminology 

• A learning sample consists of m vectors containing one dependent and n 
independent variables: (Dl/i,Il/i,l, ... ,Il/i,n),i E (l, ... ,m). These vectors 
are defined in an Euclidian space called the "sample space". These vectors, 
which we will call pattern vectors, represent measurements taken in the 
environment. 

• A measurement vector is defined as the set of independent variable values 
representing a particular object whose dependent variable value is to be 
predicted. That is, it is a pattern vector without the dependent variable. 

• To be able to make predictions on the dependent variable, its range has to 
be sub-divided or grouped into what we will call DV classes. These classes 
correspond to natural situations that can be encountered in the measure
ment environment, with respect to the dependent variable. If the dependent 
variable is either "ratio," "interval," or "ordinal," the dependent variable 
range is sub-divided into intervals; if the dependent variable is "nominal," 
categories may be grouped into a smaller set of classes. They are called 
"states of nature" in decision theory and "pattern classes" in the pattern 
recognition field [9]. We have chosen the name DV classes in order to make 
the connection with a classical statistical approach for multivariate analysis. 

• To be able to use the independent variables as a basis for predicting the 
dependent variable, they, like the dependent variables, must be mapped into 
IV classes by sub-dividing or grouping. 

• A pattern is defined as a non-uniform distribution of probabilities across 
the DV classes. The further a distribution is from uniformity, the more the 
pattern is considered to be significant. 

3.1.2 A Pattern Recognition Process 

The problem of predicting the dependent variable for a particular project can be 
stated as follows: Given a particular measurement vector (MV), determine the 
probability that the actual dependent variable value lies in each of the DV classes. 
The shape of the probability density function on the DV class range associated 
with MV is unknown. The goal and the basic principle of this process is to find a 
subset of pattern vectors in the data set, whose values for the independent variable 
are similar to the values for the independent variables of MV, and that show a 
significant pattern among the DV classes. 



www.manaraa.com

Measurement Vector = {IV1 = C1.a, IV2 = C2.b, IV3 = C3.c} 

IDEAL 
SUBSET 

Figure 1: Ideal Approach 

IV2 = C2.b 

IV3= C3.c 

155 

Taking this approach in the ideal, given a learning sample and a measure
ment vector, MV, we could select an ideal subset of all the pattern vectors in the 
learning sample having exactly the same IV instances as MV (see figure 1). How
ever, since we are usually working with small samples and numerous independent 
variables, the ideal subset is typically too small to be useful, so this ideal approach 
is not applicable. 

Alternatively, we need to find a subset of the learning sample that contains 
pattern vectors similar to MV with respect to some IVs, and that yields a sig
nificant pattern on the DV range. This subset must be large enough and contain 
sufficiently homogeneous pattern vectors to yield significant patterns. To extract 
the subset from the learning sample, we need to select a collection of IVs that 
will be used to determine the pattern vectors in the subset. The pattern vectors 
matching the MV instances with respect to the selected IV s will be extracted from 
learning sample. 

Such a process is illustrated in figure 2. Some selection function SF 
chooses a IVs in a stepwise manner that will be used to subset the data set DS. We 
see that DS has a fairly uniform distribution on the DV range. SSl, a subset of DS 
with IVl=Cl.a, shows an improvement, in that a pattern appears to be emerging. 
Finally, SS2, formed from SSl with the condition that IV2=C2.b, appears to have 
a very clear pattern, that is, objects in this subset have the DV defined on a very 
narrow range. The IV selection is done so that the resulting subset has a clear 
pattern on the DV range, and that MV is very similar to the objects in the final 
subset in terms ofthe selected IVs (i.e. IV1=Cl.a and IV2=C2.b). In other words, 
each subset resulting from a potential IV selection will be evaluated using SF to 
provide information on the degree of significance of the pattern in the extracted 
subset. The IV that yields the most significant pattern will be selected. 



www.manaraa.com

156 

os 

p 

~ SS1: 
IV1 = C1.a 

OV 

SF(SS2) > SF(SS1) > SF(OS) p 

J\ SS2: 
IV1 = C1.a 
IV2 = C2.b 

V 

Figure 2: The Pattern Recognition Process 

Two reasons justify a stepwise process: 

• The number of possible IV combinations makes an exhaustive search pro
hibitive. 

• We need to ensure a statistically significant pattern in the resulting subset, 
i.e. we want to ensure that all contributing IVs have a significant impact on 
the pattern. 

A set of experiments have led us to develop the following pattern recognition 
process (called Optimized Set Reduction) applied for any measurement vector MV: 

• Step 1: DV classes are formed either by dividing the DV range into intervals 
or by grouping the defined DV categories. For optimal results, a similar 
number of pattern vectors should be in each class. The mechanism for cre
ating classes is described in more detail below. IV classes are formed in a 
similar way. 

• Step 2: The learning sample is successively decomposed into subsets. At 
each step, an IV is selected (according to a selection function described 
below) and the objects having the same instance for the IV as the object to 
be assessed (MV) are extracted to form the reduced subset. This is done 
recursively on the reduced subsets. 

• Step 3: When a predefined condition is reached, the reduction stops. This 
condition will be referred to as the termination criteria and will be dis
cussed below. The subsets resulting from this criteria are called the terminal 
subsets. 



www.manaraa.com

OSR 

Data 
Set 

weak 

Correlation 
of Accuracy 
to Entropy 

Figure 3: Tuning the OSR Parameters 

Parameters 
are 

Suitable 

157 

• Step 4: The pattern vectors in the terminal subset(s) are then used to cal
culate the probability that the actual dependent variable value for MV lies 
in each of the DV classes. 

The resulting probabilities (that form the obtained pattern) may be used 
either for DV predictions, risk management or quality evaluation in a way 
that will be described in Section 3.2. 

Despite an apparent simplicity, this approach opens up a set of research 
questions associated with each of the steps, that need to be further investigated. 
The details of each of the steps, as well as some open issues are discussed here: 

• Creation of suitable DV and IV classes (Step 1): 

If the variable is either continuous or ordinal, the range is divided in a fixed 
number of classes. This number may be determined through a trial and 
refinement procedure (such a tuning process is illustrated in figure 3). 

Without sufficient data, increasing the number IV classes will decrease the 
average number of reductions during the OSR process, because with more 
classes, there are fewer pattern vectors in each class, and thus smaller subsets 
at each step ofthe reduction. This may preclude certain IVs from contribut
ing to the pattern. Also, whenever the number of DV classes increases, the 
number of pattern vectors per DV class decreases, and thus the calculation 
of the conditional probabilities may be less accurate. On the other hand, 
decreasing the number of DV or IV classes may make predictions more in
accurate, because real distinctions in the values of the data may be missed. 

If the variable is nominal, categories may be grouped to form IV or DV 
classes. With respect to DVs, the grouping will depend on the classification 
to be performed as well as the size of the data set, as above. For IVs, 



www.manaraa.com

158 

grouping may be subjective and depends upon the goals of the analysis. For 
example, assume one wishes to predict productivity and one of the available 
IV s is "programming language". If the possible instances for the variable are 
"C, FORTRAN, Ada, C++," one might create a class "high level language" 
containing Ada, C++ (because they allow better rates of code reuse and 
easier testing procedures) and a second class "low level languages" containing 
C, FORTRAN. If the amount of data makes it possible, four classes with the 
four programming languages may be used . 

• Choice of the IV selection function (Step 2): 

The best we have found so far is Entropy (F). The measure of entropy 
generalized for m classes from information theory can be used as the impurity 
evaluation function: 

m 

F = I: -P(G;/x) logm P(G;/x) 
;=1 

where P(G;/x) is the conditional probability of x of belonging to the DV 
class Gi, i E (1, ... , m). 

The selected IV is the one that minimizes the selection function, in this 
case, entropy. The lower the entropy the more likely we are to have found a 
significant pattern . 

• Determination of the termination criteria (Step 3): 

The termination criteria needs to be tuned to the environment, i.e. the 
available data set. Logically, if measuring the significance of a pattern by 
calculating its entropy is reasonable, then the entropy should be strongly cor
related to the observed prediction accuracy (i.e. Magnitude of Relative Error 
for continuous DVs and Misclassification Rate for discrete DVs). Therefore, 
an estimation of the prediction accuracy is possible by looking at the decom
position entropy. 

There are two bounds on the calculation. If there were no termination cri
teria, the reduction could decompose to a subset of a single pattern vector, 
trivially yielding the minimum entropy of zero. On the other hand, if we 
stop the reduction too soon, we have not sufficiently decomposed the data 
set to provide the most accurate characterization of the object to be assessed. 
Thus we are interested in achieving an accurate approximation of the selec
tion function based upon some minimum number of pattern vectors in the 
terminal subsets. To find this minimum number, we can experiment with 
the learning sample by examining the correlation between the accuracy and 
the selection function (e.g., entropy). If this correlation becomes too weak, 
then the acceptable minimal number of pattern vectors in a subset should 
be increased. The goal is to find a compromise between a good correlation 
and a sufficient number of decompositions to provide a reasonable accuracy 
for predicting the value of the DV. This determines the number of pattern 



www.manaraa.com

159 

vectors used as our termination criteria. This tuning process is illustrated 
in figure 3. One must be concerned with both the class boundaries and the 
termination criteria (TC) . 

• Estimation of the conditional probabilities that the object to be assessed 
falls into the various DV classes (Step 4): 

A simple rule would be to calculate the probabilities as the ratios of pattern 
vectors falling into the various categories versus the total number of pattern 
vectors. This is the only solution for discrete DVs because there is no notion 
of distance in the range of values. A more refined approach for continuous 
DVs might be to sum the distances between the subset pattern vectors and 
the class mean for each of the DV classes. Call this T D n , where n represents 
the class index. Note that T Dn is inversely proportional to the concentration 
of pattern vectors around the class mean for class n. Then calculate: 

where m is the number of DV classes. 

This formula assumes that the probability is inversely related to the total 
distance (T Dn) of the pattern vectors to the class mean. This approach 
refines the probability calculation since it takes into account the distances 
between the subset of pattern vectors and the class means, not just their 
membership in a specific class. We can further refine this probability calcu
lation by defining T D as the sum of the exponentials of the distances in order 
to decrease the weight of the pattern vectors furthest from some particular 
class mean. 

3.2 Prediction, Risk Management and Quality Evaluation 

The three processes, prediction, quality evaluation and risk assessment, can all 
be based on a similar quantitative approach-one based on patterns recognized 
from past experience. This section describes how OSR can support each of these 
process. Experimental results of the prediction capability are then provided in 
section 4. 

3.2.1 Prediction 

In this case, one is interested in estimating only one dependent variable based on 
the set of available independent variables. The dependent variable is a measurable 
object characteristic that is not known or accurately estimatable at the time it 
is needed. For example, one may wish to predict the error rate expected for a 
particular project development process in order to determine whether to apply a 
particular intensive code inspection process. So, one tries to estimate the error rate 



www.manaraa.com

160 

based on other characteristics (IVs) that may be measured, evaluated subjectively 
with a reasonable accuracy, or estimated through other models. 

If the dependent variable is defined on a continuous range (i.e. the notion of 
distance between two values on the range is meaningful), the following approach 
may be used: by dividing the DV range into rn successive intervals (classes Ci : i E 
(L.rn» and calculating P(C;Jx) for each class C;, we have in fact approximated 
the actual density function P(DVfx) by assuming it to be uniform in each class 
C;. Therefore, the following expected f..'i value can be calculated on Ci: 

E[P d .. fC ] lower ..boundary_C; + upper ..boundary_Ci 
f..'i = ro uchvzty ;, x = 2 

In other words, the actual density function is approximated by a histogram, 
where each column represents the conditional probability of a particular pattern 
vector x that lies in a particular DV class Ci. No assumption has been made with 
respect to the form of this probability density function. The expected value on 
the entire DV range can be approximated as follows: 

m 

E[Prodfx] = f..' ~ L P(C;Jx) X J.Li 
i=1 

This expected value can be used as an estimate of the dependent variable. 
The average error interval that can be expected may be estimated by using the 
correlation of accuracy to entropy. This correlation will be confirmed by the ex
periments described in Section 5. 

If the dependent variable is defined on a discrete range, then prediction 
becomes a classification problem: Given a set of probabilities that a particular 
pattern vector x belongs to each DV class Ci, the decision maker must decide to 
which class to assign x. The class with the highest probability may not always 
be chosen. Rather, we may choose the class based upon the loss associated with 
incorrect classifications. This is the Bayesian approach. A risk (or loss) matrix L 
has to be defined by the decision maker where Lij represents the loss of having 
chosen the strategy appropriate for Cj when the DV class (or state of nature) is 
actually Ci. A Bayesian classifier [9] will try to minimize the conditional average 
risk or loss Rj(x) (j = 1 ... m) considering the rn defined DV classes. 

m 

Rj(x) = L LijP(C;JX) 
;=} 

P(C;Jx) represents the probability that pattern vector x comes from the pattern 
class Ci. The bayesian classifier assigns a pattern vector x to the class j with the 
lowest R value. 



www.manaraa.com

161 

3.2.2 Risk management 

Software development organizations are interested in assessing the risk associated 
with management and technical decisions in order to guide and improve the devel
opment processes. Referencing [6], the risk associated with an action (e.g. software 
development) may be described through three dimensions: 

• DI: The various possible outcomes 

• D2: The potential loss associated with them 

• D3: The chance of occurrence for each outcome 

Many kinds of interdependent risks may be encountered during software 
development (e.g. technical, schedule, cost), and this makes risk management 
complex. Also, the notion of risk is by definition subjective because the associated 
loss strongly depends upon one's point of view. Charette in [6] writes: "One 
individual may view a situation in one context, and another may view the exact 
same situation from a completely different one". According to his/her goals and 
responsibilities, one will define the risk in different ways, in the form of various 
models. 

If we try to make the link between the above description of risk and OSR, 
the following straightforward associations may be established: 

• Outcomes (i.e. dimension DI) and DV classes. 

• Potential loss (i.e. dimension D2) and distance on the DV range between 
the DV class mean and the planned DV value. 

• Chance of occurrence (i.e. dimension D3) and the conditional probability 
for each DV class. 

In order to analyze risk during software development, we propose the fol
lowing approach based upon OSR: 

First, based on the three previously described risk dimensions, we calculate 
the expected difference (distance on the range) between planned and predicted 
values for each DV representing a potential risk (e.g. schedule, effort, ... ). Let us 
call these distances "DV expected deviations". From a decision maker's perspec
tive, the potential loss resulting from his/her decisions is intrinsically a function 
of several DV expected deviations that may be seen as a specific and subjective 
risk model. Therefore, a "loss function" is used as a risk analysis model and may 
be defined as a function that combines several DV expected deviations, parame
ters (e.g. reflecting management constraints) and constants (e.g. weights). The 
calculation details are illustrated in the example below. 

Consider the following example with the two continuous DVs, productivity 
and fault rate. A budget and schedule have been imposed on the project manager 
by upper management. Therefore a specified productivity Pr will be required to 



www.manaraa.com

162 

reach the management goals. From the point of view of the project manager, the 
risk offailure may be represented as a simple function calculating the Productivity 
Expected Deviation (PED): 

m 

P ED = ~ P(Cdx) x (Pr - Jl;) 
i=l 

where Jli is the mean of Ci . 

According to the result of this estimation, the project manager will be able 
assess the difficulty of the job and make a decision with respect to the develop
ment process in order to make a suitable trade-off between quality and productiv
ity. Some analysis can be performed by the manager to see how the risk evolves 
according to controllable project parameters (i.e. some of the independent vari
ables). If the project manager wants to make a risk/effort trade-off, for example, 
in order to improve competitiveness on a commercial proposal, he/she can calcu
late how the risk evolves according to the productivity required. Based on these 
observations, a suitable risk/effort tradeoff can be selected to maximize chances of 
success. 

One's perspective of risk may be more complex than the previously defined 
function, PED. For example, assume that a contractor wishes to define risk of 
financial loss if the system is delivered late and/or there are effort overruns. One 
can define the Schedule Expected Deviation (SED) as the expected delay, i.e., the 
difference between the planned and predicted schedule and the Effort Expected 
Deviation (EED) as the expected effort overrun, i.e., the difference between the 
planned and predicted effort expenditures. Then 

• SED - E~timated..size 
- PEDxAvgJ'eam_Size 

where Estimated_Size is either a parameter, like Avg_Team3ize (i.e. provided 
as an input by the manager), or another dependent variable (i.e. the result of some 
other estimation process). So the expected financial loss function can be defined 
as a function of both variables SED and EED. 

Now suppose that the cost of delay on a particular contract has an ex
ponential relationship to the delay itself. This exponential assumption is based 
upon predictions with respect to the delay of other projects dependent upon the 
completion of this project and the resulting compensations to be given to the cus
tomer. Thus, the SED needs to be weighted by some Cost per Delay Unit that is 
an exponential function of SED, call this CDU. Also suppose that CEU is the 
average Cost per Effort Unit, i.e., the average cost per staff hour for the specific 
project development team. Then we can define 

expected_loss = SED x CDU + EED x CEU 



www.manaraa.com

163 

3.2.3 Quality Evaluation 

In any quality model, one needs a baseline in order to be able to make sensible 
comparisons. That is, to evaluate how well a particular project performed, one 
must be able to assess how well it ought to have performed. OSR generated 
predictions can provide such a baseline assessment, since they are based on past 
project experience. For example, let us assume that the quality perspectives of 
interest (i.e. quality drivers) are productivity and faulLrate, since management 
views quality as both reliable and inexpensive software. 

Assume that using some project features as IV s, the OSR approach yields 
clear patterns (i.e. low entropy) with respect to productivity in the available 
data set. These patterns represent the expected productivity distributions in the 
current development environment for the project under study. The relationship 
between the actual productivity for the project under study and the expected 
value of the predicted patterns provides the basis for quality evaluation, from the 
productivity perspective. 

For example, suppose the actual productivity for the project under study 
falls far below the expected value of the predicted patterns. This implies that the 
quality of the project with respect to productivity is low. Using the pattern as a 
basis of comparison, we may ask where the difference comes from. 

Several causes may be investigated: incomplete or inadequate data collec
tion, some possible new features or variables affecting the development process, 
or, of course, the process quality being quite poor. 

One may want to describe quality, from the perspective of productivity, as a 
function of the difference between the actual productivity on the project, and the 
productivity that should have been achieved on the project. Actual productivity 
can be measured, but the notion ofthe productivity that should have been achieved 
is more difficult. One might want to determine it as the expected productivity 
determined from a collection of similar projects, which can be determined with 
OSR. Thus a quality value could be defined as a function the distance between 
the actual productivity and OSR generated predicted value. This distance may 
be defined as: 

m 

Prod..deviation = AP - L: P( Cd x) x Pi 
i=1 

with AP the actual measured productivity. 

If we include in the quality model both the FaulLrate and Productivity qual
ity drivers and we assume an approach similar to the Prod_deviation evaluation for 
calculating a FaulLdeviation, then a global quality evaluation may be formalized 
by the following quality model. 

Let us define NFD as FaulLdeviation (i.e. fault rate deviation) normalized 
by the fault rate standard deviation in the available data set and N P D as the 
equivalent variable for Prod_deviation. Based upon these unitless deviations, we 



www.manaraa.com

164 

define the following quality model: 

• If N F D < 0, N P D > 0, the larger IN F D x N P DI is, the better the quality. 

• If N F D > 0, N P D < 0, the larger IN F D x N P DI is, the worse the quality. 

• If both N F D and N P D are negative, the larger ~~~ is, the better the 
quality. 

• If both N F D and N P D are positive, the smaller ~~~ is, the worse the 
quality. 

• If both NFD and NPD have the same sign and ~~~ has a value close to 
1, then quality may be assessed as average or nominal. 

This particular quality model takes into account two dependent variables 
and illustrates that a quality model may be a subjective function of several dis
tances on the respective dependent variable ranges. This model might be modified, 
according to the user perspective of quality, to change the weighting of the various 
factors, e.g., doubling the effect of fault rate in the evaluation of quality. 

4 Experimental Results 

In this section we demonstrate the effectiveness of the approach by applying the 
OSR modeling process to the problem of effort estimation and showing that OSR 
is able to recognize meaningful patterns on the available data sets. Although we 
will only be dealing with the prediction capability, this experiment also provides 
an indication of the effectiveness of the risk assessment and quality evaluation 
capabilities, since the three processes are all based on the conditional probabilities 
estimated on the dependent variable range. Therefore the accuracy of the three 
formulas are all dependent on the significance of the recognized patterns. 

4.1 Description of the Experiment 

The largest part of our data set comes from the COCOMO database, consisting 
of 63 projects [5]. A second source of data is provided by Kemerer (15 projects), 
collected in a COCOMO format and used in an evaluation of a collection of cost 
models [7]. 

The COCOMO projects are a mix of business, system, control, high level 
interface and scientific applications. A significant percentage of these projects has 
been developed in FORTRAN (38%) and a very small number in Cobol (8%). The 
other projects include a variety of data processing applications, primarily devel
oped in Cobol (87%). The following sections describe an experimental evaluation 
of the OSR technique as applied to effort estimation based upon these two data 



www.manaraa.com

165 

sets. Results obtained with the OSR approach are compared to results from other 
standard approaches in order to provide some basis for comparison. 

In what follows, we will use the term data set to refer to the combined 
COCOMO and Kemerer data sets, test sample to refer to the Kemerer data set 
(the sample on which we are going to assess the OSR capabilities), and learning 
sample (for each optimized set reduction) to refer to the data set minus the project 
that is being assessed. Thus, 15 optimized set reductions will be performed, one 
for each of the test sample pattern vectors. Each time, the pattern vector to be 
assessed will be removed from the complete data set to form the learning sample 
(77 projects). 

However, one must consider that various subsets of the 78 projects have 
been developed in various environments, at different points in time and collected 
by different people according to different procedures, in different organizational 
structures. The difficulties in tailoring the COCOMO cost drivers to various en
vironments causes a loss of consistency in the data collection regardless of the 
analysis technique. Moreover, it is important to notice that the project productiv
ities lie over a very large range (i.e. from 20 to 2491 LOC/MM). The 78 pattern 
vector data set is small enough to assess the capability of the approach to deal 
with small samples. The number of independent variables used (15) compared to 
the available data set and the nature of these IVs (i.e. ordinal, nominal) make any 
pure regression analysis based approach difficult to apply. 

Kemerer found that all the models investigated showed a large relative er
ror in predicting effort, ranging from 772% for SLIM and 583% for intermediate 
COCOMO, to 103% for function points and 85% for ESTIMACS [7]. According 
to the author, one of the reasons for which the last two models yielded substan
tially better results is that they are built on business data processing application 
projects. Since the data used to develop the function point and ESTIMACS mod
els were either not available or not provided in a COCOMO format, we cannot 
include them in our data set even though they may be more suitable as a learning 
sample for the fifteen projects of the test sample. 

In the following sections, we first summarize the results obtained from the 
use of OSR to predict effort for the fifteen projects in the test sample based on their 
COCOMO cost drivers, and then compare these predictions with those obtained 
using two more traditional approaches: 

• a calibrated intermediate COCOMO model, 

• a stepwise regression approach. 

4.2 Predicting Development Effort Using OSR 

As the dependent variable, we use project productivity (i.e. size/effort). The 
size metric used is the "Adjusted Delivered Source Instruction" (ADSI) as defined 
in [5], and the effort unit is staff-months. The independent variables are the 
COCOMO cost drivers. The ranges for the IVs have been divided into two intervals 



www.manaraa.com

166 

I Project I Act. Prod. I Pred. Prod. I Act. Effort Pred. Effort MRE Entropy 

1 884 299 287 846 l.94 0.63 
2 491 935 82 44 0.46 0.24 
3 580 674 1107 668 0.40 0.45 
4 2467 643 87 333 2.83 0.06 
5 1338 952 336 473 0.41 0.27 
6 595 1196 84 42 0.50 0.47 
7 1853 1016 23 42 0.83 0.47 
8 1535 1006 130 199 0.53 0.52 
9 2491 431 116 670 4.78 0.56 
10 542 1028 72 38 0.47 0.06 
11 983 1028 258 247 0.04 0.06 
12 557 1025 231 125 0.46 0.06 
13 1028 1035 157 155 0.01 0.06 
14 667 1070 247 154 0.38 0.27 
15 881 964 70 62 0.11 0.06 

Table 1: Experimental Results 

(i.e. the boundary being located either just below or above nominal depending 
on the IV), and the DV (productivity) range into five intervals, each containing 
an equivalent number of pattern vectors, to the extent possible. The termination 
criterion was set to 8 projects, after being tuned based upon the learning sample. 
No more sophisticated decomposition heuristic was used. OSR was used to predict 
productivity, and effort was estimated as size (ADSI) divided by the predicted 
productivity. 

Table 1 gives the results for each of the fifteen data points of the test sample. 
The columns contain the project number, the actual productivity, the predicted 
productivity, the actual effort, the predicted effort, the MRE of the predicted 
effort, and the entropy yielded by the OSR process. 

Overall, we see a positive relationship between entropy and the predictive 
error, MRE. When entropy is low, the error is low, and when entropy is high, 
the error is high. The three most accurate predictions, for projects 11,13 and 15, 
occurred when entropy was at it lowest value. 

One problem that may affect the analysis is that the estimation accuracy 
can be significantly disturbed when the actual productivities of projects are close 
to the extreme boundaries of the productivity ranges. This is because the density 
of projects in these parts of the range may be much lower than projects found in the 
middle of interval ranges. Only intuition based upon understanding the particular 
situation can help the manager detect an unusual, extremely low jhigh productivity 
so the effort estimate may be increased/decreased. Obviously, something that has 
never or rarely occurred is difficult to predict. 

Despite an encouraging predictive accuracy, the two data points with highest 



www.manaraa.com

167 

productivity (projects 4 and 9 in Table 1) yield large effort overestimation. These 
projects have a productivity far above the other projects of the learning sample. 
More information on these particular projects would be necessary to understand 
why the productivities were so high. It appears clear that something occurred that 
was not captured by the ADSI and the COCOMO cost drivers. However, in order 
to keep these projects from introducing noise in our analysis, we will analyze the 
results obtained both with and without them in the learning sample. 

Discounting the projects with the extreme productivities, the worst predic
tions occurred on projects 1, 7, and 8. However, these predictions also had the 
highest associated entropies, supporting our belief that entropy can serve as an 
indicator of predictive accuracy. 

Overall, the mean MRE of the OSR predictions was 94%. However, if 
the projects with the extreme productivities are not considered, the mean MRE 
becomes 50%, an improvement over what was cited in [7]. 

4.3 An Evaluation of the OSR Technique 

To allow for an evaluation of the use of OSR technique for the prediction of pro
ductivity and effort, a comparison with more conventional techniques is provided. 
A calibrated intermediate COCOMO model was built (for each project in the test 
sample) by recalculating the nominal equations based on the learning sample, as 
recommended in [5]. A second model was built using a stepwise regression pro
cedure to select the significant productivity drivers, and dividing size (ADSI) by 
this predicted productivity to obtain an effort prediction. Again, this was done 
once for each project in the test sample. 

Table 2 summarizes the results by giving, for three entropy intervals, the 
mean Magnitude of Relative Error of the effort estimation for each modeling tech
nique, (columns MRE-OSR, MRE-CC for calibrated COCOMO and MRE-SR 
for stepwise regression), and the percent of the test sample falling in that inter
val, (column %TS). This provides some insight into the correlation between the 
accuracy of the effort estimation and the entropy. The results are provided both 
with and without projects 4 and 9. It should be noted that all three techniques 
performed poorly on these projects. 

Comparing the results of the OSR and regression based techniques leads to 
several observations. First, for this data set, the OSR technique provides a signifi
cantly better prediction than either a tailored COCOMO or a stepwise regression. 
For 10 of the 15 projects, the prediction of the OSR model was more accurate 
than that of both regression models. If outliers are not removed, the two regres
sion based models had an average MRE of 206% and 115% respectively, while the 
OSR model had an average MRE of 94%. If the projects that showed extremely 
high productivities are not considered, the MRE for the regression models becomes 
104% and 72% respectively, while the OSR model is 50%. The results for OSR 
are much better that the regression techniques in the two lower entropy categories 
(37% vs. 109% and 66%, respectively, for the calibrated COCOMO and the step-



www.manaraa.com

168 

Data Set Entropy Interval MRE-OSR MRE-CC MRE-SR % TS 

all projects F < 0.06 0.65 0.34 0.78 40 
0.06 < F < 0.47 0.49 1.71 0.80 40 

F > 0.47 2.46 6.22 2.61 20 
any 0.94 2.06 1.15 100 

4,9 removed F:::; 0.06 0.22 0.33 0.48 38 
0.06 < F < 0.47 0.49 1.71 0.80 46 

F > 0.47 1.24 0.77 1.03 15 
any 0.50 1.04 0.72 100 

Table 2: Comparison of the Three Techniques 

wise regression models). However, in the highest entropy class, all techniques fare 
poorly. For OSR, this result should have been expected, since poor entropy implies 
that no significant pattern has been found, and thus OSR is not expected to give 
a very accurate result. Consequently, in the highest entropy category, regression 
based techniques may perform better. 

For the OSR method, the predictions are clearly more accurate when the 
associated entropy is low. If, using the reduced data set, we test the null hypothesis 
that the MRE means of the three categories are equal against the hypothesis that 
they are not equal, we can conclude that there is a difference among the mean 
MREs at the 0.03 level of significance. Therefore, whenever one makes an estimate, 
the entropy of the pattern on which the estimate is based can be used to provide 
an assessment of the accuracy of the estimate. For example, in this environment, 
if the obtained entropy is around 0.06, the expected accuracy should be around 
22%, according to the results presented in table 2. 

One clear benefit of the OSR technique is this ability to provide an indi
cation of the expected accuracy of the prediction, as demon:strated by the clear 
correlation of MRE to entropy. Projects with characteristics that have previously 
shown widely varying productivities (i.e. no clear patterns) are flagged with high 
entropies, allowing the manager to recognize that the prediction may be suspect. 
The regression based models provide no such indication of the accuracy for an 
individual prediction. 

For example, the tailored COCOMO model provided relatively accurate 
predictions for projects of the semi-detached mode (an average MRE of 32%), 
except for a poor prediction for project 8, with an MRE of 133%. The prediction 
for project 8 using the OSR model was better (MRE of 53%), but still not very 
accurate. However this prediction was flagged with a high entropy, indicating an 
unstable prediction. The regression based models provide no indication of the 
potential of the inaccurate prediction, while the OSR technique indicates that no 
significant pattern has been recognized in the available data set. 

One interesting observation in the performance of the regression based tech-



www.manaraa.com

169 

niques is that the OSR produced entropy also appears to provide an indication as 
to the quality of these predictions. Both the calibrated COCOMO and stepwise 
regression based models have a better accuracy when the associated entropy is 
low than when it is high. Thus it appears that the two approaches may be very 
complimentary. The regression techniques may fare better when a high entropy 
was generated (i.e. no pattern was found). In any case, the entropy can serve as 
an indicator of the expected accuracy of the prediction, and help to determine the 
most appropriate prediction method. 

5 Conclusions 

Optimized Set Reduction (OSR) has been developed in order to address data 
analysis issues within the software development process. The procedure has the 
following positive characteristics: 

• It makes no assumptions with respect to probability density functions on 
the dependent and independent variable ranges. It does not attempt to fit 
data to predefined distributions, rather it uses the data to approximate the 
actual distribution (i.e. patterns). No particular mathematical relationship 
between the DV and IVs needs to be assumed. Thus OSR seems to fulfill 
Rl. Also, it handles discrete and continuous IVs in a natural and consistent 
way, and therefore meets &t. 

• It allows an estimation of accuracy for each prediction so we can answer the 
question: Is this estimate usable? This fulfills R2 . When relevant IVs are 
not available at the time of the prediction, OSR still allows a prediction to be 
made; however, OSR will provide a warning if the prediction is expected to 
be poor. While other techniques provide model-level warnings (such as a low 
R-squared for regression techniques), OSR will also report on the predictions 
where it is still expected to be accurate. In these circumstances, OSR may 
be more useful to the manager than the other techniques. This satisfies 
in part R3 (i.e. missing information). The issue of outliers is still under 
investigation. 

• It provides an automated refinement of the model as new data is incorporated 
into the data set. The process for selecting the most relevant IVs from those 
available in the data set can be automated. Thus, the prediction process 
may automated and supported by a tool in an effective way. 

The results of the preliminary experiments have been encouraging, since the 
predictions obtained with OSR typically were more accurate than those of other 
modeling techniques, and the entropy of the extracted subset was found to have a 
strong correlation with the MRE of the prediction. 

The technique has been applied to other problems of the software develop
ment process, such as classifying components as likely to be error prone or difficult 



www.manaraa.com

170 

to maintain based on their structural characteristics. The preliminary results from 
these experiments are reported in [2, 4]. Also under investigation are techniques to 
support interpretation of the patterns, to better facilitate improvement-orineted 
software development. A prototype tool supporting the OSR approach has been 
developed at the University of Maryland as a part of the TAME project [1]. 

References 

[1] V. R. Basili and H. D. Rombach. "The TAME Project: Towards 
Improvement-Oriented Software Environments," IEEE Trans. Software Eng., 
14 (6), June, 1988. 

[2] L. Briand, V. Basili and C. Hetmanski. "Providing an Empirical Basis for 
Optimizing the Verification and Testing Phases of Software Development," 
IEEE International Symposium on Software Reliability Engineering, North 
Carolina, October 1992. 

[3] L. Briand, V. Basili and W. Thomas. "A Pattern Recognition Approach for 
Software Engineering Data Analysis," IEEE Trans. Software Eng., November, 
1992. 

[4] L. Briand and A. Porter. "An Alternative Modeling Approach for Predicting 
Error Profiles in Ada Systems," EUROMETRICS '92: European Conference 
on Quantitative Evaluation of Software and Systems, Brussels, April, 1992. 

[5] B. Boehm. Software Engineering Economics, Prentice-Hall, 1981. 

[6] R. Charette. Software Engineering Risk Analysis and Management, McGraw
Hill, 1989. 

[7] C. Kemerer. "An Empirical Validation of Software Cost Estimation Models," 
Communications of the ACM, 30 (5), May, 1987. 

[8] R. W. Selby and A. A. Porter. "Learning from Examples: Generation and 
Evaluation of Decision Trees for Software Resource Analysis," IEEE Trans. 
Software Eng. 14 (12), December, 1988. 

[9] J. Tou and R. Gonzalez. Pattern Recognition Principles, 1974. 



www.manaraa.com

CALIBRA TION OF SOFTWARE COST MODELS TO DOD 

ACQUISITIONS 

INTRODUCTION 

Audrey E. Taub 

The MITRE Corporation 

Bedford, Massachusetts 01730 

During a 1987 model recalibration study [1], the MITRE Cost Analysis Technical 

Center (CATC) showed that COCOMO [2] models significantly underestimated USAF 

Electronic Systems Division (ESD) software project efforts and schedules. Subsequently, 

new CATC models were calibrated based on a regression analysis of historical ESD and 

related programs. Our current research has focused on two goals: (1) to expand our 

software database of typical ESD software developments, and (2) to develop statistically

based software models that improved upon our ability to estimate the effort and schedule 

of ESD software developments. The recent database effort involved the validation and 

updating of the existing CATC database and the addition of four new data points. The 

statistical analysis was aimed at improving effort and schedule predictive models through 

the use of various regression methodologies such as linear and nonlinear regression, 

correlation analysis, and error analysis. The purpose of this paper is to discuss the 

results of this research, which include the development of six new effort models, one new 

schedule model, and an uncertainty methodology for determining confidence limits around 

effort and schedule point estimates. 

During this discussion, we will make reference to various model "types" such as 

basic embedded and nominal semidetached, which correspond to the definitions provided 

by B. W. Boehm [2]. Familiarity with Boehm's work is assumed on the part of the 

reader. 



www.manaraa.com

172 

DATA ANALYSIS 

In this section we present the effort and schedule equations resulting from our 

research along with the criteria we used for model selection. A brief description of our 

database is also included. It is very important to understand the type of data on which 

these models are based if the models are to be used on projects outside the ESD 

environment 

The effort data are analyzed in tenos of what we have defined as subsystems. A 

subsystem can be a single Computer Software Configuration Item (CSCI) or an 

aggregation of CSCIs where each cannot be developed in isolation from the other(s). The 

subsystems themselves are defined as being relatively independent of each other, in the 

sense that the people developing different subsystems do not need to communicate 

extensively with each other and the software of one subsystem does not require extensive 

integration testing with another subsystem. For example, a data reduction CSCI 

(subsystem) can often be developed in relative isolation from the applications software, 

since it is only dependent upon receiving files of specified format, from which it will 

extract the data and perform specific analyses. Or, a signal processing subsystem for a 

radar system can be developed in isolation from the applications that perform detection, 

tracking, correlation, and identification of objects. 

Schedule data, on the other hand, are analyzed at the project level. While individual 

CSCI or subsystem development efforts may be independent of each other, the overall 

schedule of the project is dependent upon the completion of every CSCI or subsystem. 

In addition, numerous resource constraints (technical personnel, computers, support staft) 

limit the number of software development tasks that can be performed in parallel. As a 

consequence, we believe the overall schedule is more closely correlated with total effort 

expended on all subsystems than with the effort expended on any single CSCI or 

subsystem. 



www.manaraa.com

173 

The CATC Database 

The CATC software calibration database contains descriptive data on 35 ESD 

software subsystems whose sizes range from 6 to 264 KEDSII. The applications are 

varied and include command and control, radar, simulation, and training. 

Table 1 contains a summary of the CATC software development data used during 

this study. The table is divided into two sections, one for embedded mode subsystems 

and one for semidetached mode subsystems. For each subsystem we present KEDSI, 

actual effort measured in staff months (SM), nominal effort2 in SM, the higher order 

language (HOL) in which the program was written, and the productivity (Prod) given in 

equivalent delivered source instructions (EDSI) per SM. Table 2 contains project level: 

schedule data and includes KEDSI, effort, and schedule (or project duration) measured in 

months. 

New Effort and Schedule Equations: A Summary 

The principle method of analysis throughout this study was regression analysis, 

which included the use of linear least squares and nonlinear regression techniques. These 

techniques were applied to our entire data set as well as subsets of the data. The subsets 

were generated by subdividing the data by size (lines of code), application (e.g., radar, 

command and control), and language (e.g., FORTRAN, Jovial). A number of regression 

analyses were performed until we determined a set of equations whose standard errors were 

lower than those of our previously calibrated models. Table 3 contains a summary of our 

recalibrated effort and schedule equations. We found that subdividing the embedded 

1 KEDSI is the number, in thousands, of equivalent delivered source instructions as 
defmed by B. W. Boehm [2]. 
2 Nominal effort is computed by dividing actual effort by the effort adjustment factor 
(EAF) [2]. 



www.manaraa.com

174 

Table 1. CA TC Software Database Summary Statistics 
Embedded Data 

Sub- Actual Nominal 
system Effort Effort DOL Prod 

# KEDSI (SM) (SM/EAF) Lan2ua2e (EDSIISM) 

1 6.1 150 142 Assembler 40 

2 6.1 85.8 51.7 C 71 

3 9.1 13.1 18.5 Jovial 693 

4 10.4 691 601 Jovial 15 

5 11.5 169 91.5 Assembler 68 

6 16.0 61.3 51.1 FORTRAN 261 

7 16.9 56.0 72.7 Assembler 302 

8 20.3 241 119 CMS-2 84 

9 25.6 72.4 94.0 Assembler 353 

10 25.8 161 31.6 Jovial 160 

11 26.2 289 85.1 EDL 91 

12 37.5 157 123 FORTRAN 239 

13 45.0 469 539 FORTRAN 96 

14 55.7 341 182 Assembler 164 

15 63.1 430 229 Jovial 147 

16 75.1 1678 1459 Jovial 45 

17 103 1222 N/A FORTRAN 84 

18 106 479 417 Jovial 221 

19 106 1474 780 FORTRAN 72 

20 144 415 256 C 346 

21 157 2043 1310 Jovial 77 

22 162 3499 1871 FORTRAN 46 

23 232 5103 2700 CMS-2 45 

24 264 6496 2980 FORTRAN 41 



www.manaraa.com

175 

Table 1. (Concluded) 
Semidetached 

Actual Nominal 
Sub- Effort Effort DOL Prod 

system KEDSI (SM) (SM/EAF) Language (EDSI/SM 
# 

25 5.40 52.2 25.0 Jovial 103 

26 7.41 28.0 8.7 Jovial 265 

27 8.70 115 61.3 Jovial 75 

28 8.78 94.0 79.7 Jovial 93 

29 9.00 59.1 44.4 FORTRAN 152 

30 9.05 53.0 70.7 Jovial 171 

31 12.9 132 66.8 Jovial 98 

32 46.4 158 180 C 294 

33 73.1 385 196 Jovial 190 

34 139 586 814 FORTRAN 237 

35 165 704 1006 Assembler 235 

mode data by size (in terms of lines of code) was the most effective means of reducing 

modeling error. Thus, embedded mode subsystems have models designated as small and 

large, where small represents models based on subsystems whose size fell between 6 and 

63 KEDSI and where large represents models based on data whose size fell between 75 

and 264 KEDSI. Semidetached data were originally subdivided into small (seven points) 

and large (4 points) subsets. Although a small improvement was made in terms of 

reducing the standard error, it was not substantial. Therefore, we decided not to adopt two 

separate models on the basis of such limited data. The selected nominal embedded mode 

effort models were based on ordinary least squares methodologies [3], whereas the selected 

basic embedded mode effort models for small and large subsystems, basic semidetached 

models, and the new schedule model were based on nonlinear regression methodologies 

[4]. 



www.manaraa.com

176 

Table 2. Project Level Schedule Data 

Project Effort Schedule 

Desi2nator KEDSI (SM) (Months) 

A 16 61 26 

B 20 157 18 

C 26 241 33 

0 38 289 29 

E 45 469 13 

F 47 335 26 

G 139 586 26 

H 169 1231 33 

I 193 623 31 

J 200 2862 35 

K 222 5103 75 

L 233 2350 40 

M 250 6496 43 

Although it may seem unusual to have obtained linear nominal models from data 

that is typically associated with a nonlinear model, the phenomenon can be explained as 

follows. Consider the equation for productivity implied by the nominal effort equation, 

E = a(EAF)(KEDSI)b 

P od .. - EDSI _ (1000)( 1 )(KEDSI)(1-b) r UCbvlty - -- - -- -- . 
E a EAF 



www.manaraa.com

177 

Table 3. New Calibrated Effort and Schedule Equations 

Model Model Prediction 

# Type Equations 

1 Basic Embedded/Small1 E = 91.0 + 0.66 (KEDSI) 1.52 

2 Basic Embedded/Large2 E = 425 + 0.09 (KEDSI) 2.00 

3 Nominal Embedded/Small E/EAF = 46.0 + 2.31 (KEDSI) 

4 Nominal Embedded/Large3 E/EAF = -462 + 12.4 (KEDSI) 

5 Basic Semidetached E = 10.7 (KEDSI) 0.82 

6 Nominal Semidetached E/EAF = 45.0 + 0.09 (KEDSI)1.82 

7 Schedule S = 5.90 (E) 0.25 

1. Small refers to subsystems that are > 6 and < 75 KEDSL 

2. Large refers to subsystems that are ~ 75 KEDSI and::; 264 KEDSL 

3. Although this model has a negative intercept, negative effort is never 

predicted because KEDSI ~75. 

This expression implies the following: 

ifb = 1, productivity does not vary with size 

if b > 1, productivity decreases with an increase in size 

ifb < 1, productivity increases with an increase in size. 



www.manaraa.com

178 

However, it is possible that the EAF multiplier is correlated with size. In our 

embedded mode data we found that productivity is correlated with the inverse of the EAF, 

i.e., 

Prod .. C 
UCbVlty '" EAF ' 

where C is a proportionality factor. This expression is comparable to the previous 

expression for productivity when b = 1. Thus, when the variable EAF is introduced into 

the nominal effort equation, the parameter b may be one, and the effort linear with respect 

to size. The EAF may, in effect, be capturing any relationship that exists between 

productivity and size. 

The basic semidetached model (model 5) has an exponent less than one, a 

phenomenon often interpreted in the literature as representing an economy of scale. That 

is, it implies that the greater the number of lines of code to be developed, the smaller the 

dollars per line of code. However, we are not ready to make this generalization based on 

such a limited data set. Figure 1 illustrates the basic semidetached data and corresponding 

prediction equation. 

800 

700 

600 E = 10.7 (K) 0.82 
• . ~ 

Effort 500 
(SM) 400 

300 
200 

100 

0 

0 20 40 60 80 100 120 140 160 180 

KEDSI 

Figure 1. Basic Semidetached Data with Prediction Equation 



www.manaraa.com

179 

The nominal semidetached model (model 6), unlike the nominal embedded models, is 

nonlinear. Figure 2 illustrates the data along with the three-parameter prediction model. 

In this case, the EAF values are large (2.1, 3.2,1.9) for several of the smaller 

subsystems 

1200 

1000 

800 
ElEAF 
(SM) 600 

400 

200 

0 
0 

• 
E/EAF = 45.0 + 0.09 (K) 1.82 

~ ~ ~ 00 100 1~1~ 1~100 

KEDSI 

Figure 2. Nominal Semidetached Data with Prediction Equation 

and small (0.72,0.70) for the two largest subsystems. Since actual effort is divided by 

EAF to obtain the nominal data, we experience a relative decrease in the small subsystem 

effort and a relative increase in the large subsystem effort. This results in a concave up 

data set, best represented by a near -quadratic model. 

Model Determination 

We frrst recognized the inadequacies of the COCOMO models for the ESD 

environment in our 1987 model calibration study [1]. In particular, COCOMO 

underestimated effort for most large ESD subsystems and schedule for all but one project. 

These fmdings are illustrated in figures 3 and 4. Our recalibrated equations represent the 

best fit to the data we have obtained to date. Figure 3 illustrates the embedded mode data 

along with the new CATC models for small and large subsystems compared with the 



www.manaraa.com

180 

E/EAF 
(SM) 

1200 

1000 

800 

600 

400 

200 

0 
0 

• 
E/EAF = 45.0 + 0.09 (K)1.82 • 

~ ~ 00 ~ 100 1~1~ 1001~ 

KEDSI 

Figure 3. CATC and COCOMO Basic Embedded Models 

~ 

70 
60 
50 CATC 

• 

Schedule ~ ____ .- __ ---- .. ---. 
(Months) 30 -:. .,..... ___ -~ - .. - - .. - - .. - -

• .... .. .... -- COCOMO 
20 !' ...... -,. ,,-
10 ". 
o I I I I I I I 
01 23 45 67 

Effort (Thousands of SM) 

Figure 4. Schedule Data with CATC and COCOMO Models 



www.manaraa.com

181 

COCOMO basic effort model. Figure 4 illustrates the schedule data along with the new 

CATC and COCOMO schedule models. 

In addition to the differences between the models, figures 3 and 4 illustrate the high 

degree of variability among the data. Unlike textbook data sets, these data do not lend 

themselves to straightforward model characterization. Nevertheless, we have attempted to 

develop models whose modeling errors are smaller than those of our previous models. 

Error reduction was measured in terms of standard error (SE). When effort (E) is the 

variable of interest, SE is mathematically defmed as 

SE= 
(n-p) 

A 

where Ei is the actual effort for the ith data point, E i is the effort estimated from one of 

our models, n is the number of data points used to calibrate the model, and p is the 

number of parameters in the model. Although effort is used in this definition, the same 

defmition applies to schedule or any other variable of interest The term 

is called the residual (or error) term and (n - p) is the degrees of freedom [3]. Figure 5 

illustrates the residuals for the COCOMO model applied to our large subsystem data. 

Figure 6 illustrates the same for the CATC model. The SE for the COCOMO model is 

1935 staff months while the SE for the CATC model is 990 staff months, a 49 percent 

reduction. 



www.manaraa.com

182 

7000 

6000 e1 
5000 

Effort 4000 leo (SM) 
3000 Ie 3 .-e .'" 
2000 es ~6 ~!"''''.'''''' ...... 
1000 egl ~"'."'] e ." e 5 

0 7 

0 50 100 150 200 250 
KEDSI 

Figure 5. COCOMO Model Residuals for Large Subsystems 

7000 
6000 
5000 

Effort 4000 
(SM) 3000 

2000 

300 

1000 

O+-----~~-----+--------~--------~----~--------~ 
o 50 100 150 

KEDSI 

200 250 

Figure 6. CA TC Model Residual for Large Subsystems 

300 

Improvement over the COCOMO models was achieved by considering alternative 

model forms. COCOMO-like effort and schedule models are of the form [3] 

That is, they can be expressed, by a suitable transformation of the variables, in a linear 

model form. 



www.manaraa.com

183 

For example, a two-parameter nonlinear model of the form 

Y=a(X)b. 

can be linearized using a natural logarithm transformation that puts the model in the form 

10 Y = In (a) + b(loX). 

A significant drawback to this model form is that it underestimates effort for our large 

subsystems. Therefore, we decided not to limit ourselves by the regression technique and 

considered a more general, three-parameter model of the form 

The parameters a, b, and c were estimated using nonlinear regression techniques. 

Table 4 displays the SE for both the 1990 recalibrated CA TC models and the 

COCOMO models. Without exception, significant improvements in prediction accuracy 

are achieved when using the recalibrated models. Figures 2 and 3 illustrate this point 

Table 4. Standard Errors (SE) for Calibrated CA TC Models 

Model SE (SM) SE (SM) % 

# Model COCOMO (1990) Change 

1 Basic Embedded/Small 107 95 -11 

2 Basic Embedded/Large 1935 990 49 

3 Nominal 101 41 -59 

Embedded/Small 

4 Nominal 734 650 -11 

Embedded/Large 

5 Basic Semidetached 103 40 -61 

6 Nominal Semidetached 73 40 45 

7 Schedule 15.5 2.8 -82 



www.manaraa.com

184 

UNCERT AINTY ANALYSIS METHODOLOGY 

To realistically capture the error associated with each of the prediction models, we 

have developed a methodology for imposing uncertainty bounds on an estimate. This 

method involves generating a cumulative distribution function about the ratio of the 

actual and estimated effort. We have generated uncertainty distributions for each of our 

seven models, but will limit our discussion to selected models. While this discussion 

will use effort as our variable of interest, the same arguments hold for schedule. 

Uncertainty Distribution Generation 

For ease of computation, we would like the lower and upper bounds of our 

uncertainty interval to be a multiplicative function of our point estimate. That is, we 

would like to multiply our estimate by. factors to obtain the lower and upper uncertainty 

bounds. In this discussion, we will refer to these multiplicative factors, generically, as re 

(for effort ratio). In addition to these factors, we would also like to have a probability 

associated with each interval such that we can say there is a probability of p that the 

actual effort (or schedule) falls within the computed interval. 

A 

We begin by computing our effort ratio. If E represents the actual effort, and E the 

effort estimate computed from one of our parametric models, define re as 

E 
re =.,. 

E 

where 

O<re <00. 

Our ESD software database provides us with values of E for each of our subsystems, and 
A 

E is computed for each subsystem using one of our parametric models. We assume that 



www.manaraa.com

185 

the ratio of actual effort to estimated effort on future developments (within the size range 

of our data) will behave in a similar fashion. 

We know that if our models could predict without error, then E = E, or, 

E 
re =..,....= 1. 

E 

In this most unlikely case, there would be no uncertainty about our point estimate (i.e., 

re would equal one for the upper and lower bounds). In reality, re is distributed about 

one. Therefore, we want to generate the cumulative distribution function (COP) of re for 

each of our seven models. An example of such a distribution is given in figure 7, which 

illustrates the COF for small embedded subsystems. 

Table 5 contains the effort ratio distribution for the basic embedded small 

subsystems. In this table we have computed (interpolated from the COF column) the 

10th, 20th, 80th, 

1 
0.9 
0.8 
0.7 
0.6 

CDF 0.5 
0.4 
0.3 
0.2 
0.1 
O+-----+-----~----~----~----~----~ 

0.4 0.6 0.8 1.2 1.4 1.6 

Figure 7. Relative Error COF for Small Basic Embedded Subsystems 



www.manaraa.com

186 

and 90th percentiles for the distribution of effort ratios. An 80 percent uncertainty 

interval for the effort ratio may be computed using the bounds associated with the 10th 

and 90th percentiles (Le., 0.40 and 1.55). To compute 80 percent uncertainty bounds on 

an effort estimate, we simply compute the lower and upper bounds as 

0.40(:8) and 1.55(:8), respectively. 

We say that there is an 80 percent chance that the true effort falls within these bounds. 

In general, we are not restricted to capturing the middle p percent of the uncertainty 

distribution. For example, we may want just an upper bound such that there is an 80 

percent chance that the estimate is less than or equal to that upper bound. From table 5, 

we see that the upper bound is 1.50 times the estimated effort. 

An Effort Estimation Example 

As an example, let us consider the proposed development of a system containing 

three subsystems. Figure 8 illustrates the system configuration. Subsystem 1 contains 

Subsystem 1 Subsystem 2 
Computer 

Support Progran 

Subsystem 3 

Database 

Figure 8. Sample Project Software Development 



www.manaraa.com

187 

Table 5. Basic Embedded Small Subsystem Uncertainty Factors 

Sub- Basic Estimated Effort 

system Effort Effort Ratio Uncertainty 

# KEDSI (SM) (SM) (re) CDF % tile Factors 

11 26 289 185 1.56 1.00 

8 20 241 155 1.56 0.92 

90 1.55 

13 45 468 306 1.53 0.85 

80 1.50 

1 6 150 101 1.48 0.77 

5 12 169 118 1.43 0.69 

15 63 430 450 0.95 0.62 

10 26 161 183 0.88 0.54 

14 56 341 388 0.88 0.46 

2 6 86 101 0.85 0.38 

12 38 157 254 0.62 0.31 

6 16 61 136 0.45 0.23 

20 0.43 

7 17 56 140 0.40 0.15 

10 0.40 

9 26 72 182 0.40 0.08 

three CSCIs: an Operational Control Processor/Segment 1 (OCP/Seg 1), an Operational 

Control Processor/ Segment 2 (OCP/ Seg 2), and a real time operating system (OS/Real 

Time). Subsystem 2 consists of a single Computer Support Program CSCI, and 

subsystem 3 consists of a database CSC!. Table 6 contains the KEDSI estimates for 

each CSCI along with the estimated development effort. All of the CSCIs are required 



www.manaraa.com

188 

Table 6. Line of Code Estimates 

Effort 

CSCI KEDSI Estimate 

OCP I Seg 1 17 

OCP I Seg 2 35 

OS I Real Time 25 

Subtotal (Subsystem 1) 77 958 

Computer Support Program 

(Subsystem 2) 32 219 

Database 

(Subsystem 3) 50 343 

TOTAL 159 1,520 

to operate within a strongly coupled complex of hardware, software, and operational 

procedures. We know from this description of the system's operational environment 

that these are embedded developments. We see that subsystem 1 falls into the large 

subsystem (~ 75 KEDSI) category, while subsystems 2 and 3 are in the small 

subsystem « 75 KEDSI) category. Thus, we need to use the large, basic embedded 

prediction equation, 

E = 425 + 0.09(KEDSI)2.00 

for subsystem 1, and the small, basic embedded prediction equation, 

E = 91. 0 + O. 66(KEDSI)1.52 

for subsystems 2 and 3. 



www.manaraa.com

189 

Our effort point estimate is 958 staff months for subsystem 1; 219 staff months for 

subsystem 2; and 343 staff months for subsystem 3. This gives us a total project 

estimate of 1,520 staff months. Eighty percent uncertainty bounds for subsystems 2 and 

3 can be computed by determining the multiplicative factors (given in the ratio column) 

associated with 0.10 and 0.90 in the COF column of table 5. Since 0.10 and 0.90 are 

not explicitly listed in the COF column, we linearly interpolate and find the associated 

effort ratio values of 0.40 and 1.55. For subsystem 2, the lower uncertainty effort bound 

is 0.40(219) = 88 staff months and the upper bound is 1.55(219) = 340 staff months. 

For subsystem 3, the lower uncertainty effort bound is 0.40(343) = 137 staff months and 

the upper bound is 1.55(343) = 532 staff months. To estimate the uncertainty interval 

for subsystem 1, we need table 7. In this case, the 10th percentile is 0.18 and the 90th 

percentile is 1.30. Thus, the lower uncertainty effort bound for subsystem 1 is 0.18(958) 

= 172 staff months and the upper uncertainty bound is 1.30(958) = 1245 staff months. 

In summary, our 80 percent intervals for each subsystem are given by 

Subsystem 1: (172, 1245) SM 

Subsystem 2: (88, 340) SM 

Subsystem 3: (137,532) SM. 

To obtain a distribution for total project effort, we need to combine the information 

we have for each of the three subsystems. One method for accomplishing this is Monte 

Carlo simulation. For each subsystem, one would generate a random variate from the 

appropriate error ratio distribution (small embedded for subsystems 2 and 3, and large 

embedded for subsystem 1), multiply by the respective point estimate for each 

subsystem, and sum the generated effort values for each of the three subsystems. This 

procedure would be replicated a suitable number of times (at least 1000) and a distribution 

of total effort could be generated. The resulting total project COF may then be used to 

determine an uncertainty interval for total project effort (using the same method discussed 

for individual subsystems.) 



www.manaraa.com

190 

Table 7. Basic Embedded Large Subsystem Uncertainty Factors 

Sub- Basic Estimated Effort 

system Effort Effort Ratio Uncertainty 

# KEDSI (SM) (SM) (re) CDF % tile Factors 

16 75 1678 933 1.80 1.00 

90 1.30 

22 162 3499 2801 1.25 0.89 

80 1.07 

19 106 1474 1443 1.02 0.78 

24 264 6496 6697 0.97 0.67 

23 232 5103 5264 0.97 0.56 

17 103 1222 1376 0.89 0.44 

21 157 2043 2632 0.78 0.33 

18 106 479 1433 0.33 0.22 

20 0.30 

20 144 415 2286 0.18 0.11 

10 0.18 

CONCLUSIONS 

It is clear from this analysis that the considerable variability in our database makes 

the development of a single software effort or schedule prediction model with a small 

error difficult. However, subdividing the data by size and mode and implementing the 

uncertainty methodology provides the analyst with a structured and reasonable approach 

to bounding an effort (or schedule) estimate at a quantifiable probability level. However, 

if we want major improvements in our software predicting capability, we need to break 

away from the basic line-of-code model and tum to models that better capture the software 

development process. One suggestion is to utilize a System Dynamics model [5], which 

attempts to reflect the dynamic interactions among software development activities. Its 



www.manaraa.com

191 

parametric inputs allow the user to perform sensitivity analyses that aid in strategic 

planning. 

REFERENCES 

1. Funch, P. G., "Recalibration of Basic and Nominal COCOMO Equations to Recent 
Air Force Acquisitions," Third Annual COCOMO Users' Group Meeting, Software 
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1987. 

2. Boehm, B. W., Software Engineering Economics. Prentice Hall, Inc., Englewood 
Cliffs, NJ, 1981. 

3. Draper, N. R. and Smith, H., Applied Regression Analysis. John Wiley and Sons, 
Inc., New York, NY, 1981. 

4. Ratkowsky, D. A., Nonlinear Regression Modeling, Marcel Dekker, Inc., New 
York, NY, 1983. 

5. Cho, C. C., "A System Dynamics Model of the Software Development Process," 
Fifth Annual COCOMO Users' Group Meeting, Software Engineering Institute, 
Carnegie Mellon University, Pittsburgh, PA, 1989. 



www.manaraa.com

ESTIMATING SOFIWARE SIZE FROM COUNTS OF EXTERNALS, 

A GENERALIZATION OF FUNCTION POINTS 

I. OVERVIEW 

by 

John E. Gaffney, Jr. and Richard Werling 

Software Productivity Consortium 

2214 Rock Hill Road 

Herndon, Vtrginia 22070 

Estimating the size of a new software system is key to estimating the amount of labor 

required to develop it. The error in the estimate of the size of a prospective software 
system often exceeds the estimation error for the amount of labor required for devel
opment and for productivity of its creation. Hence, the development of a method to 

better estimate software size, especially one that can be applied relatively early in the 
development cycle, should be of considerable interest to the software development 
community. All of the parametric software development cost estimating tools/me
thods on the market, such as COCOMO, require as a primary input the size of the 
intended system, typically denominated in either source statements or function 

points. The values of other parameters input to these models, such as the type of plat

form on which the proposed system is intended to operate, generally relate to the esti
mation of productivity. 

This paper demonstrates how to estimate the size of a software system in source state

ments from the unweighted counts of four measurables of the intended system's re

quirements. These unweighted counts are often available very early in the develop
ment cycle. These measurables are: external inputs, external outputs, external 
inquiries, and external interfaces (with other programs). The standard function point 

measure is based on counts of these same four measurables, plus the count of internal 

logical files. The sum of the counts of the first three items (that is, excluding external 
interfaces) is also relatively strongly related to the software size. Thus, one can devel

op a relationship between this count and software size that can be employed to esti

mate software size. This paper presents some analyses of function point data on some 

commercial software systems (Albrecht 1983; Kemerer 1987; Kemerer 1990). They 
suggest that the unweighted sum of the counts of the externals (the primitives from 

which the function point value is determined) correlates about as well with the source 



www.manaraa.com

194 

statement count as does function points. Since the calculation of function points in

volves a subjective estimation of some additional factors, including the appropriate 

weighting to apply to the counts of each of the primitives, use of the "raw" sum of 
the primitives could prove advantageous. Not doing the weighting and other process
ing of the raw counts would be simpler and might result in a reduced degree of error 

in the source statement estimate determined from it. 

Experience with MIS (management information systems) and commercial software 
using function points shows that an early estimate of size can be made, generally quite 

successfully, for those classes of software. However, function point advocates typical

ly use the counts of the five items cited above to calculate function points, and not 

an estimate of the count of source statements. 

Two empirically derived relations, between the sums of the counts of three and of four 

externals and the size of the system in KSWC (thousands of source statements), are 

provided for nineteen non-MIS aerospace software systems. The three count relation

ship explains 86.8 percent of the variation in KSWC, while the four count relationship 

explains 89 percent of the variation in KSWC. Data on two sets of business systems also 

were analyzed (Albrecht 1983; Kemerer 1987; Kemerer 1990). The analysis indicates that 

the unweighted count of inputs and outputs is correlated about as well as with program 

size as was function points. This observation suggests that weighting these counts as well 
as calculating a "value adjustment factor" by which the weighted sum would be multi

plied, per standard function point methodology, would often add minimal incremental 

accuracy to the size estimate. The analysis suggests that estimates of the counts of the 

three or of the four externals cited above can be used in a parametric algorithm to esti

mate the size of a system in source statements. The analysis further suggests it is likely 

that this can be done for embedded systems as well as for MIS and commercial (business 

oriented) systems. 

II. DEFINmON OF FUNCTION POINTS AND HOW TO COUNT THEM 

This section briefly descnbes the nature of the function point measure and its origin, 

and summarizes how it is calculated. The function point measure was created by Allan 

J. Albrecht of IBM as a means to quantify the size of certain customer applications 

(pertaining to business operations) that would be programmed by IBM on a contract 

basis. The measure was created as an ingenious response to a classical problem in soft

ware development, the often-found difficulty for customers to convey what they want 

an intended software system to do. The function point measure also embodies the 
idea of creating a measure of software size independent of the language in which it 

is coded, indicating the amount of function it provides rather than the number of 



www.manaraa.com

195 

source statements the programmer writes. Indeed, as tallied by Capers Jones (Jones 
1986), various coding languages (e.g., assembly, Ada, Jovial, COBOL, etc.) differ con

siderably with respect to the amount of function they convey on average in each state

ment written using them. 

One begins calculating the function point measure of a system by counting the num

bers of each of four categories of externals of the system cited above, plus the count 
of internal logical files. Good practice for developing software system requirements 

says that the statement of requirements should deal only with the externally visible 
behavior of the intended system; the four types of externals are just such items. The 

four externals are: 

• External inputs (e.g., transaction types), items that enter the boundary of the 
system that cause processing to take place. 

• External inquiries (e.g., types of on-line inquiries processable by the system), 
unique inquiries that require an immediate response. 

• External outputs (e.g., types of reports), items that leave the system bound
ary after processing has occurred. 

• External interfaces (e.g., interfaces to other systems, including files accessed 
by the system but not modified by it, basically external sources of information 
required for its processing). 

The complexity of each of the four types of externals and internal logical file(s) are 

estimated as low, medium, or high. Their counts are weighted correspondingly and 
then summed to determine the "function count." The next step in the calculation of 

function points is to determine the "value adjustment factor" which involves assessing 

the impact of 14 factors relating to the operation of the system (likely, or actual in 
the case of an existent system). Finally, the function point count is calculated by multi
plying the "function count" by the "value adjustment factor," As pointed out in (Al

brecht 1983), it is reasonable to expect that the size of a program (in terms of the num

ber of source statements composing it) should be a function of the number of high 
level inputs and outputs to it. Indeed, this is a generalization of Halstead's (Halstead 

1977) concept of "program volume" (which he applied only at the algorithm level). 

Ill. ANALYSIS USING AEROSPACE SOFTWARE DATA 

The possibility was investigated of generalizing the concept of the function point mea

sure and of applying it to aerospace software. Function points are currently used pri-



www.manaraa.com

196 

marily for commercial or business and MIS, not for aerospace systems. The concept 

was to try to develop an algorithm for estimating software size from items available 
very early in the development cycle, preferably at the requirements stage. That is, the 

objective was to develop an empirical relationship between counts of measures of the 
"externals" of a program and its size in source statements. The prime motivation was 

to determine if the counts of the externals of these programs were sufficiently asso
ciated with the actual size of these systems so that a parametric estimating algorithm 
could be developed to estimate the size of such systems from this data. 

Data for 19 aerospace (non-MIS) software systems, ranging in size from 2,000 to 
235,000 source statements was studied. Thble 1 presents the data used; it includes the 
counts of three externals (A), the counts of four externals (E), and the size in KSLOC 

for each of the 19 cases. 

First, an equation was developed relating the sum of three of the externals-inputs, 
outputs, and inquiries-to the size of the system in KSLOC. The sample correlation 

between the unweighted sum of these variables and the size of the system in KSLOC 
was found to be 0.9315. This means that 86.8% (.93152) of the variation of KSLOC 
was "explained" by the variation of the sum of the input/output variables (see Thble 

2). Similarly, an equation was developed relating the sum of four externals, the three 
cited above plus interfaces, and the KSLOC count for each program. The sample cor
relation was 0.9434; 89 percent of the variation was explained (see Thble 3). Figure 

1 shows a plot of the the empirical data and the equation fitting it using the sum of 
the four externals (E). 

Three different fits were made to the data for A (the sum of four externals) and E 

(the sum of four externals) in Thble 1. The three fits were based on: 

• Using all 19 points (with the four externals ranging from 29 to 6822). 

• Using points 1 through 13 (ranging from 29 to 99). 

• Using points 13 through 19 (ranging from 99 to 6822). 



www.manaraa.com

197 

Thble 1. Actual KSLOC vs. A and vs. E 

A, E, 
Point Sum of three Sum of four Actual Size, 

Number externals externals KSLOC 

1 29 29 2.00 

2 28 32 6.00 

3 36 36 17.35 

4 35 36 13.21 

5 35 36 11.14 

6 30 36 13.66 

7 40 40 5.20 

8 41 42 9.86 

9 49 49 1.47 

10 50 50 18.00 

11 50 65 20.00 

12 58 59 36.20 

13 67 99 75.85 

14 180 188 11.83 

15 653 653 22.15 

16 9 920 41.00 

17 1463 1464 13.98 

18 4019 4519 147.00 

19 6072 6822 235.00 

Thble 2 provides the equations of fit, the sample correlation ( r ) values for KSLOC 

and A, the percent variation in KSLOC explained by A, and r2 times 100. In all three 

cases, a linear equation in A provides a reasonably good fit to the observed values of 



www.manaraa.com

198 

KSLOC. This is supported by the high values of r2, an indication of the degree of 
fit in the sense that r2 times 100 is the percentage of variation in the one variable ex

plained by the other. Thble 3 provides information similar to that in Thble 2 but for 
the sum of four externals (E). Thus, the relatively good fits obtained were not due 
just to either the very large or to the very small values of A or E, whichever data set 

was employed. The experience with this data set should suggest the utility of consider
ing a piece-wise fit to his data as an empirical size-estimating using equation counts 
of the program externals. 

Figure 1 shows a plot of the KSLOC values versus the sum of the four externals (E), 
as well as the linear fit to that data which appears curved because the horizontal axis 

of the plot is a log scale. A log scale was used because of the wide range of the values 
of E and because they are grouped. 

KSLOC 
250 

200 

150 
Correlation = 0.9434 
% variation explained = 89 Fit To Data: 
n = 19 points S=12.28+0.3E 

100 

• 
50 

Sum of4 

• Externals* 

0 (E} 
1 10 1000 10000 )I 

* = External Inputs, External Outputs, External Inquiries, External Interfaces. 
** = Horizontal Axis Proportional to Log E 

Figure 1. KSLOC as a Function of Count of Program Externals* 



www.manaraa.com

199 

Thble 2. Data Fits Using Sum. Of Three Externals (A) 

Sample Correlation Percent Variation 
Case Equation Of Fit of A and KSLOC, r explained, .-2*100 

Points 1-19 S = 13.94 + 0.034A 0.9315 86.77 

Points 1-13 S = -36.33 + l.28A 0.7741 59.93 

Points 13-19 S = 20.87 + 0.032A 0.9139 83.52 

Thble 3. Data Fits Using Sum Of Four Externals (E) 

Sample Correlation Percent Variation 
Case Equation Of Fit of E and KSLOC, r explained, .-2*100 

Points 1-19 S = 12.28 + 0.03E 0.9434 89.00 

Points 1-13 S = -26.09 + 0.93E 0.8955 80.19 

Points 13-19 S = 14.56 + 0.03E 0.9284 86.20 

Iv. ANALYSIS USING COMMERCIAL SOFTWARE DATA 

An investigation similar to that described above was then conducted using data on com

mercial software. Two sets of data were considered. The fll'St set was that from (Albrecht 

1983). The second was from (Kemerer 1987; Kemerer 1990). 

Data from the three externals (inputs, outputs, and external inquiries) was considered 

for a data set of 24 systems (Albrecht 1983). The data set did not include the counts 

of external interfaces, so such data could not be employed in the evaluation. The sim

ple sum of the three externals defined above, as well as the value of function points 

for the 24 programs, was related to KSLOC. The three variable sum provided a some

what better relationship for estimating KSLOC than did function points. The results 
of the analyses of this data are summarized in Thble 4. 



www.manaraa.com

200 

Thble 4. KSLOC As A Function of Sum Of Counts 
Of Program Externals, Albrecht and Gaffney Data 

Sample Correlation Percent Variation 
Size Measure With KSLOC, r explained, r2*100 

Three Externals: 0.8896 79.1 
Inputs, Outputs, Inquiries 

Function Points 0.8199 67.2 

Thsting the values of the sample correlation coefficients in Thble 4 shows both of them 
to be significant at better than the one percent level. Further, the hypothesis that the 
correlation coefficients, of which these samples are estimates, are equal was accepted 

at the one percent level using procedures in (Graybill 1961; Quenouille 1952). That 
is, it is a virtual certainty that the two sample correlation coefficients are estimates 

of the same correlation coefficient. This suggests that using the more complex func
tion point measure may provide no advantage over the simpler sum of three externals 

as the basis for estimating KSLOC. 

The results of analyzing the Kemerer data on 15 systems are summarized in Thble 5. 

In this case, the function point measure provides a better basis for estimating KSLOC 
than does either the sum of three or the sum of four externals, unlike the Albrecht 
data set. However, the ''function count" measure has a somewhat better sample cor

relation with KSLOC than does the "function point" measure. That is, the intro-

Thble 5. KSLOC As A Function Of Sum Of Counts Of 
Program Externals, Kemerer Data 

Sample Correlation Percent Variation 
Size Measure With KSLOC, r explained, r2*100 

Three Externals: 0.6974 48.6 
Inputs, Outputs, Inquiries 

Four Externals: Inputs, 0.7944 63.1 
Outputs, Inquiries, Interfaces 

Function Counts 0.8782 77.1 

Function Points 0.8350 69.7 



www.manaraa.com

201 

duction of the ''value adjustment factor" (see the earlier section on how to countfunc
tion points) adds noise. This confirms Kemerer's observation that his "unmodified 

Function Counts have a higher correlation than the modified Function Points. This 
suggests that .... the 14 'complexity adjustment' factors are not adding any information 

for this particular sample." (Kemerer 1987) 

Thsting the values of the sample correlation coefficients in Thble 5 shows that each 
of them is significant at better than the one percent level. Further, the hypothesis that 
the correlation coefficients, of which the samples are estimates, are equal was ac

cepted at the one percent level. That is, it is a virtual certainty that the four sample 
correlation coefficients are estimates of the same correlation coefficient. This sug
gests that using function counts or function points may provide no advantage relative 

to the simple sum of either three or four externals for the purpose of estimating 

KSLOC. 

Analysis of the computation of function points for the two commercial system data 

sets suggests that the function point measure may be, at least in some cases, more 
noisy than the basic data from which it is calculated. That is, weighting the counts of 
the five items to compute the function count, and weighting that figure by the value 
adjustment factor may contribute relatively little to the accuracy of the estimate. Esti
mates of KSLOC may be made, based on the unweighted sums of the number of top 
level externals of the program at issue, that are about as good as those based on func
tion points. This suggests that any given item of the five may contnbute no more or 
less, on average, than any other to the amount of function in the software system. The 
analyses of the two sets of data for the commercial systems suggest that the counts 

(or estimates of the counts) of these variables might be used in a parametric size esti
mating algorithm. 

V. CONCLUSIONS 

The analyses summarized here suggest that an empirical software size estimating 

model based on program externals may be developed for embedded software systems 

as well as for business systems. The parameters of such a model would be best devel

oped by the organization intending to use it based on data from the experience of that 

organization, not that provided in this paper. A prime purpose of this paper is to pres
ent the concept, not the particular data employed to support its utility. The data to 

be used in such a model can be obtained and used to develop an estimate of software 

size for a project at requirements time. This would enable a more accurate estimate 
of development costs to be made earlier in the project .. The estimate so obtained can 

be pooled with size estimates developed using other techniques. Such a technique is 



www.manaraa.com

202 

that suggested by (Gaffney 1984) in which counts of CSCls and CSCs would be used 

as the basis for estimating the ultimate size of a software system, given that data is 

available on the sizes of these major software system units from previous projects. 

Analysis of the computation of function points for some commercial systems suggests 

that the function point measure may be, at least in some cases, more noisy than the 
basic data from which it is calculated. This confirms Kemerer's observation (Kemerer 

1987, p.425). That is, weighting the counts of the items to compute the function count, 

and weighting that figure by the value adjustment factor, may contribute relatively 

little to the accuracy of the estimate and may add noise to it. Estimates of the size, 

in KSLOC, of business systems may be made based on the unweighted sums of the 

number of top level externals of the program at issue, that are about as good as those 

based on function points. Very importantly, analysis of some data on non-MIS aero

space systems suggests that the sum of the counts of the e~ernals of aerospace pro
grams may be reasonably well correlated with the size of these programs, measured 

in KSLOC. Thus, a software organization which develops such systems should be able 

to develop an empirical system useful for estimating software size that is a function 

of the number of externals of the program. 

VI. REFERENCES 

Albrecht, A. J., and 
J.E. Gaffney, 
1983 

Gaffney, J. E., 
1984 

Graybill, EA. 
1961 

Halstead, M. H. 
1977 

Jones, C. 
1986 

Software Function, Source Lines of Code, 
and Development Effort Prediction: A 
Software Science Validation, IEEE 
Transactions on Software Engineering, Vol. 
SE-9. 

Estimation of Software Code Size Based on 
Quantitative Aspects of Function (With 
Application of Expert System Technology), 
Journal of Parametrics, Vol. 4, No.3. 

An Introduction to Linear Statistical Models. 
liVl. 1. McGraw-Hill. 

Elements of Software Science, Elsevier. 

Programming Productivity, McGraw Hill. 



www.manaraa.com

Kemerer, C.H., 
1987 

Kemerer, C.H, 
1990. 

Quenouille,M.H. 
1952 

203 

An Empirical Validation of Software Cost 
Estimation Models., Communications of the 
ACM 

Private communication. 

Associated Measurements. Butterworth's 
Scientific Publications. 



www.manaraa.com

CECOM's Approach for Developing Definitions for 

Software Size and Software Personnel 

• Two Important Software Economic Metrics 

Stewart Fenick, Project Leader, Software Process Metrics Program 

US Army Communications·Electronics Command (CECOM) 
Research, Development & Engineering Center (RDEC) 

Software Engineering Directorate (SED) 

AMSEL·RD·SE·ST ·SE 
Fort Monmouth, New Jersey 07703 USA 

Introduction 

This paper addresses a study by U.S. Army Communications-Electronics Command 

(CECOM) into aspects of two management metrics with great impact on software 

economics - software size and software personnel. The common denominator between 
them being software productivity. 

Problem. Currently, there does not exist firm definitions of meaningful measures for 

assessing software size and software personnel. As a result, these two metrics are being 

applied inconsistently across the defense software industry with no commonality of 

understanding or usage. 

Impact. The proliferation of metrics terminology and of application methodologies 

hampers achievement of the primary purposes for using metrics. Those are: 

• to derive trend and deviation indicators and problem pointers to aid management 

control and direction of ongoing projects through early awareness and insight; 

• to leverage lessons learned in order to promote global improvement of 
organizational ways-of-doing-business, and of software acquisition, development 

and support processes; 

• to provide historical data for tracking and assessing gains in software process 

productivity and efficiency; 

• to identify desirable characteristics of software system processes and products for 

translation into definitive quality requirements; 

• to enable estimates based on quantitative information in order to assure economic 

stability through smart resource planning; 

• to provide an objective management mechanism to help produce supportable, 
quality software products on schedule, within cost. 



www.manaraa.com

206 

Towards A Solution. The defense software community has at least taken a first step to 
solve the problem - realization and identification of that problem. This has led to attempts 
across the industry to derive solutions. But solution alternatives are also proliferating and 
include, among others: 

• Software Reporting Metrics and Software Management Metrics developed by the 
Air Force System Command (AFSC) Engineering System Division (ESD) and 
MITRE Corporation; 

• AFSC ·and Army Materiel Command (AMC) Software Management and Quality 
Indicators; 

• Software Management and Quality Indicators of Project Manager Field Artillery 
Tactical Data Systems (PM FATDS); 

• Software Development Status Indicators of the US Army Missile Command 
(MICOM); 

• The Software Quality Framework of the USAF Rome Labs; 
• The Applied Metrics Program of the Naval Undersea Warfare Center (NUWC); 
• Software Development Measures of NASA Software Engineering Lab (SEL); 
• Software Support Qualitative Measures of the US Army Information Systems 

Engineering Command (USAISEC); 
• U. S. Air Force Operational Test & Evaluation Center (USAFOTEC) Life-Cycle 

Support Metrics; 
• DoD core set of Acquisition Metrics developed under the metrics-·initiative of the 

Software Engineering Institute-(SEI) of Carnegie Mellon University (CMU); 
• US Army Software Test & Evaluation Panel (STEP) T &E Metrics; 
• Institute of Electrical and Electronics Engineers (IEEE) terminology 

standardization-efforts; 
• Many private sector measurement programs - usually proprietary. 

Further proliferation occurs as each set is "handed-off' to a user because the sets are 
modified as each user organization then follows an independent validation and upgrade 
path. This is true even if organizations initially adopt the same set, unless they join to 
follow the same path. 

CECOM is also attempting a solution, but witlt.a difference - rather than champion a 
single set of metrics, we hope to coordinate and integrate with other investigations so as 
to hasten the development of a global metrics methodology. In fact, the CECOM base
line draws from a number of state-of-the-practice programs, and from information ex
change at a number of defense software community working groups and other forums. 

Further, rather than a "hand-off', a dynamic, follow-on support program is proposed that 
includes technology transfer (training and seminars, guidance, awareness briefings), ser-



www.manaraa.com

207 

vices (system-specific customization, application teams, real-time problem solving), and 
upgrade (validation efforts, gathering feedback and lessons learned, advanced issues 
workshops, guidance updates). 

Local/Global Coexistence. Note the prior reference to a global metries methodology. 
This does not-necessarily mean adoption of a singular, common metrics set and applica
tion process, but can also refer to adapting to, and inclusion of, local" implementations, 
methods and techniques that satisfy management needs and priorities. This then is a 
flexible global methodology. As it turns out, many concerns (e.g., cost, schedule, per
sonnel) are "common across systems anyway. 

The need for a local/global methodology is driven by the fact that most organizations 
have ingrained ways.of building software. This includes the way that productivity and 
size measurements, and personnel assignments, are addressed and managed. These 
system-specific considerations manifest themselves as obstacles to doing software 
measurement in the first place, and to developing a singular metrics methodology in the 
second place. These obstacles include: 

• resource shortfalls; 
• natural resistance to change; 
• fear of intrusion and of being critiqued; 
• lack of on-board expertise 

- and thus the need for more staff, training, learning curve adjustments; 
• not-on-my-watch syndrome; 
• too costly to change for perceived added value; 
• lack of a track record for the new methodology 

- no validation, no earned credibility, no confidence). 

Therefore, the existence of these local implementations, issues and obstacles, may pre
clude development of a "superset" of common or standard measures. Instead, both 
local and global versions may need to coexist and, in fact, to be integrated. Thus there 
will be a need to develop normalization or conversion analysis techniques so local mea
sures can be made compatible within the global setting_- primarily for entry of data and 
information into, and retrieval of lessons learned from, a global database. 

Compatibility of data, data formats, terminology and metrics criteria is also important for 
promoting good communications among all the players, which is essential to the success 
of any measurement program. 

Objectives. As for specific metrics for size and personnel, there is concern about the cur
rent situation, and the need to address the issues surrounding these two important, and 
basic, management and economic factors. The goal of the CECOM study is analytical 



www.manaraa.com

208 

derivation of informative and useful definitions based on criteria related to the signifi
cance of their impact on the evaluative, predictive and corrective functions of program 
management oversight This should lead to new, refined or modified algorithms avail
able for utilization in existing resource estimating models and in management metrics 
application process models. 

Several alternatives exist and will be investigated: various physical and logical measures 
for size; and personnel measures by technical area, mission domain, abilities and skills, 
-and so on. In addition. the notion of value - of a line of code; of a man-hour-- will be 
addressed. 

These investigations will span all life-cycle activities and may result in derivation-of 
multiple metrics. For instance, in addition to code measures, size metrics algorithms can 
be derived based on numbers of requirements, on design structures related to functional 
complexity and modularity, or on numbers of tested units. The choice of which to use 
would depend on the particular data point of interest, and where in the life-cycle it 
occurred. 

Software "Value". This paper considers a quality perspective on software size and 
personnel and their relationship to software productivity. The perspective is that of 
software value - that simple counts (of lines of code, of people, of man-hours) are not 
sufficient for defining size, staff and productivity for meaningful utilization in estimat
ing, measuring, assessing, evaluating and predicting those areas of software acquisition, 
development and support, that are of primary interest to managers. 

Knowledge beyond line count, people count and man-hour count is required. There is 
need to know the effort (to develop, to utilize) represented by lines - the notion that~ 
of code has value (complex and critical software costs more than routine software). 
There is need to know the quality of anindividual's effort (to analyze, to produce) as 
represented by a man-hour - the notion that an individual's output has value-(proficient 
people produce more and better than inexperienced people). Productivity is not linearly 
related to numbers of-people, but is dependent on abilities of people. 

Value can be used to: 
• compare producibility of modules; 
• compare application of capabilities to similar projects by different organizations; 
• make timely trade-off decisions based on.early awareness of significant economic 

implications. 

The study will attempt to quantify software "value" components of algorithms for soft
ware size, manpower and productivity. 



www.manaraa.com

209 

Is it farfetched to aim to be able to answer contractor productivity questions like: 

• If a software task of value V is assigned to a software engineer of proficiency P, 
how many lines of useful code per day can be expected to be produced? 

Or to aim to be able to make government estimation statements like the following? 

• This is a Value_Type_3_System and thus requires a Maturity Level 2 contractor, 
38 man-months, 10 senior people with 8.5 average proficiency, and $6.6 million. If only 
6 seniors are proposed, then expect52 man-months and $8.3 million. If only Levell, 
increase estimates 42%. Where Type_3 might be: tactical mission, Ada, complexity level 
B, size range C, and so on. 

CEMSM and the CCDM. As noted, CECOMRDEC, through its Software Engineering 
Directorate (SED), has started a program for development of a metrics set and methodol
ogy for use by high level managers - CECOM Executive Management Software Metrics 
(CEMSM) and the CEMSM Criteria-Driven Methodology (CCDM), an issue-driven, 
process-oriented approach to measurement. As a general statement, the larger the pro
ject, the greater the value of a measurement program. As defense industry software 
systems continue to grow in size and complexity, an approach like-CCDM takes on 
added importance. 

Although there are a number of factors not fully resolved (such as the size and personnel 
concerns discussed in this paper), there is a need to take an initial stand based on existing 
knowledge, and get measurement into practice. Thus CEMSM and CCDM are being 
made available to managers of SED-supported systems. This will allow the technology 
to evolve out of the R&D phase in a structured way, be applied to actual systems, and 
mature through iterative growth based on reabworld feedback. But research into basic 
issues must go on in parallel. 

The initial CEMSM-set1 consists of the metrics shown in the table on the next page 
(please note that size and personnel R&D issues considered in this paper are not yet 
reflected in this set - an upgrade, incorporating advanced material and guidance for appli
cation of a full measurement process, is scheduled for a 1993 release). 

CEMSM Guidebook, SPS-EMSM-00391, 31 October 1991, Revised 



www.manaraa.com

210 

CECOM Executiye Manaument Software Metrics (CEMSMl 

1. Cost/Schedule Performance 7. Staff Experience 
2. CSU Development Progress 8. Target Computer Resource Utilization 
3. Test Progress 9. Host Computer Resource Utilization 
4. Incremental Release 10. Requirements and Design Stability 
5. Software Size 11. Design Structure 
6. Software Development Personnel 12. Software Fault Profile 

The CCDM incorporates consideration of: 

• leveraging defense industry state-of-the-practice / influencing the state-of-the-art; 
• variety of audiences; 
• system status (new, in-process, deployed); 
• use of CEMSM as a default, if a viable and compatible local adaptation can not be 

found; 
• tailoring of data, metrics and metrics criteria based on managers' primary life-

cycle issues, priorities, risk assessments and resource constraints; 
• need for full application and acquisition guidance; 
• need for full guidance for analysis including inter-metric correlations;· 
• assimilation of quantified metrics data with data from other sources of system 

information; 
• a give-and-take, non-adversarial, government-contractor "negotiated" process; 
• promoting organizational improvements of software engineering, software 

management and software measurement processes; 
• promoting improvement of the acquisition life-cycle software development and 

support processes; 
• "lead-in" guidance for issues better left to local implementation; 
• incorporation of local lessons learned into a global project database; 
• technology insertion, transfer and stabilization; 
• developing metrics expertise among project personnel; 
• full-service support aimed at a customer hand-off; 
• user-friendly implementation and.problem-solving; 
• automation - to better facilitate data collection and analysis, reduce costs, and 

reduce delay between collection data points and corrective action injection points; 
• periodic CEMSM upgrade based on pilot project validation and user feedback. 



www.manaraa.com

211 

Impact of Value on Life-Cycle Activities. Size and staff measures play important roles, 
in determining if contemplated software system concepts (especially for unprecedented 
systems) will lead to beneficial results, by helping to answer: 

• what it costs to produce the software; 
• what the software is worth to the customer. 

Each of these roles influences the other. When customer requirements are for a complex 
and critical software system, then the developer must propose and provide first-rete 
capabilities including proficient staff. Towards this end, SEI Contractor Capability 
Assessments are starting to play into the pre-award process. Of course, the customer 
must be prepared to provide sufficient funding and commitment to enable stated require
ments to come to fruition in a quality way. Conversely, when the customer is estimating a 
budget and other resources, then the developer's current capabilities (staff, processes, 
automation) for building the desired product must be factored in. It is important to 
capture the specifics of a development on both sides - government requirements and 
developer capabilities. As evidence of the realization of this, defense industry Request 
For Proposals (RFP) and contractual language is maturing all the time from abstract and" 
general statements to more definitive quantifications and descriptions of quality software 
requirements and of the processes and facilities needed to produce them. 

It is also becoming accepted practice to require bidders to provide a description of their 
measurement methodologies as part of their proposal. Thus the government can leverage 
industry practices for measuring and tracking size, staff and productivity issues. 

These economic roles depend on the value of the software and on the quality of the effort 
to produce the software. Costing software accurately requires consideration of: 

• its producibility 
- is this the best design (most efficient, most suitable) for this development? 

can it be developed productively? are government-imposed standards 
(DOD-STD-2167A documentation and reviews, ANSI/MIL-STD-1815A 
for Ada, etc.) a barrier or catalyst? can it be implemented cost-effectively 
(e.g., is it too complex an application)? is it documented well for purposes 
of repeatability and maintainability? and so forth; 

• its usefulness 
- what it does and how well (is it a critical application?); what the customer's 

benefits are; if it has a user-friendly human interface; how it handles faults 
and errors; how it recovers from a crash; what the operational life 
expectancy is, and the maintenance requirements over its lifetime; etc.; 

• its physical attributes 
- size; complexity; host requirements; limits and constraints under which the 

software must operate; etc .. 



www.manaraa.com

212 

During initial applications of the CEMSM set, lessons learned will be sought to 

determine important components of the size value and personnel value equations. In 
other words, the study will look at the "value of value" for purposes of controlling and 
managing (planning, estimating, assessing, redirecting) a number of software life-cycle 
activities, of interest to both government and developers, including: 

• pre-award activities 
- RFP preparation; 
- proposal preparation; 
- proposal evaluation; 
- generation of statement-of-work (SOW) requirements; 

• developing formal budgets, milestone schedules and resource allocation plans; 
• estimating and assessing progress; 
• estimating and assessing resource utilization needed to complete acquisition, 

development and support activities; 
• determining staffing levels and distribution of those levels over the life-cycle; and, 

making personnel assignment decisions; 
• pricing deliverables; 
• determining impact on schedule of software complexity and the need for qualified 

personnel with the expertise and experience to address that complexity 
- in general, com.plexity grows with size, personnel proficiency addresses the 

ability to deal with that complexity; 
• striving for quality· 

- both size and personnel directly impact on the risk of achieving quality; 
• evaluating productivity for making programmatic decisions related to: 

- learning curve mitigation; 
- training; 
- reassignments and corresponding loss of corporate memory; 
- management structure and communications; 

• assessing near-term riSk: and long-term impact 
- benefits vs. cost, i.e., the value of investing in process improvements in 

order to obtain improved products; 
- ripple effects, good and bad; 
- by-products, e.g., organizational improvements in efficiency, productivity; 
- improvements to the management function for better control and direction 

of the acquisition, development and support of software systems; 
- ability to express quality requirements in implementable terms; 
- side effects, e.g., improving the metrics application process itself. 



www.manaraa.com

213 

Software Size 

Size is not a simple concept involving just count. Qualifiers, weightings or modifiers are 
needed to fuUy understand exactly what the count is counting. A thousand lines of infor
mation system software does not hold the same economic implications as a-thousand 
lines of embedded, tactical software. 

Measuring size of a software system is only partially addressed by the notion of physical 
space as usually associated with lines of code, semicolons, etc .. Nor is it fully addressed 
by the notion of logical partitions - requirements, function points, mental discrimina
tions, etc .. What's missing is knowledge of the complexity of the lines, of the require
ments, and, knowledge of the depth and breadth of their use. Also, criticality and 
usefulness, of the function performed by the software, should be considered. 

To provide this missing dimension, size measures need to address issues of effort - effort 
for production, for implementation, for utilization. The driver for determining a suitable 
size measurement is its impact on_.primary management concerns - cost; productivity; 
human and computer resources; schedule; functionality; usability, etc .. A simplistic line 
count does not provide the right kind of information. A value component addressing the 
effort behind the lines must be added in. 

Additionally,there are issues of language (e.g., an Ada program with a percentage of 
Assembly; recoding a FORTRAN system in Ada); of code type (new, modified, reused, 
replicated, delivered, support, etc.); of software work breakdown structure (WBS) granu
larity (CSCI, CSU, subsystem, etc.); and, of development configuration (distributed 
hosts, prime-subcontractor, etc.). 

In a local setting, measures must be defined for each system or class of systems, and then 
applied consistently over the life-cycle~Multi-language systems should count compatibly 
across those languages - e.g., don't use line counts of one with statement counts of 
another (unless a cross-language weighting-scheme is developed and validated). 

Physical, Functional, Virtual. Purely physical size_deals with line counts; bits, bytes, 
and blocks; semicolons, executable statements; and so forth. Logical measures deal with 
numbers ofrequirements (shalls); procedures; functions; etc .. Virtual size deals with 
issues of effort where the apparent effort (as judged by just a few lines of code, or by re
use of many lines) is not the true effort that went into building those lines as, for 
instance: 



www.manaraa.com

214 

examples where effort is mater than evidenced by the line count 
• coding a very complex function requiring many hours of "conceptualizing", 

research, communication with peers, or trial-and-error; 
• modifying a module or reworking a module in development, but where only a 

small-percentage of code is touched after many hours of analysis and redesign;-
• maintenance activity where magnitude of effort (analysis, rework and more 

rework) does not equate to the few lines of software produced or altered; 

example where effort is less·-than evidenced by the line count 
• use of code generators; 
• repeated use of already developed code (reuse by hl>rary; by reference; by 

replication). 

As an example of a virtual measure, a simplistic way to assess the amount of rework is to 
weight the size of the module (in which the code being reworked resides) with the 
amount of time expended on the problem. As an option, the manager can choose to sepa
rate the time into "bins" for junior staff, for senior staff, for support personnel such as 
QA folks, and so forth. This accounts for the "kinds" of time being expended. But doing 
thatdoes not fully factor in the proficiency of the personnel assigned to the problem, and, 
therefore, does not address the issue of the quality oCthe time spent on the problem. That 
proficiency must be included in order to produce a true rework measurement Proficien
cy is addressed later in this paper. 

Therefore, virtual size is not a count, but a weighted count dependent on expended effort. 
And, effort is gauged not only by elapsed man-hours, but by the technical depth 
applied during those hours - i.e., the proficienc;y of the man in man-hours. 

Physical count gives credit for writing code down; logical count gives credit for 
functional partitioning (what it does / how efficiently); virtual count .gives credit for not 
re-inventing the wheel (by taking into account reuse and re-thinking). 

A Comment. An ongoing issue is whether to include comments in line counts. Com
ments can be regarded as quality indicators, inasmuch as they affect understandability, 
evaluation and rework, traceability, and, maintainability. This would lead one to classify 
comments under documentation rather than software. 

Another issue concerns documentation itself as a side issue of the size problem. If 
documentation measures are employed, there is risk of a development being document
driven. However, if documentation is not assessed for size, completeness, etc., then the 
risk is of poor documentation and its impact on supportability and usability. 

Both these issues will be addressed by the CECOM study. 



www.manaraa.com

215 

Comparative vs. Absolute. 

Different Size,Same Technicals. Measuring by pure physical count has its most 
value when it comes to appreciating the relative size of software programs, especially 
when there are orders of magnitude involved. In other words, a reasonable picture or 
understanding of what your dealing with (and have to plan and prepare for) can be 

obtained when comparing the ten thousand line program you've just completed with a 
one-hundred thousand line program you're thinking of undertaking. 

Howeve:r. the picture becomes cloudy unless mission domain, functional complexity, 
selected development process, and implementation language, are roughly equivalent. 

Same Size, Different Technicals. But what if programs are similar in size? What 
does it mean to develop ten thousand lines of Ada code vs. ten thousand lines of 
FORTRAN? The differences have impact on planning, resource utilization, productivity 
and implementation requirements. Lines of--code, by themselves, do not fully cover the 
situation. Language vs. language considerations involve staff skills, training, automated 
capabilities, company standards, and specific company experience with the language. 

As an example, one obvious economic impact for a defense contractor wishing to stay 
competitive, is the retraining or restaffing needed to bring a DoD-mandated Ada capabil
ity in-house, and then building on that initial capability to develop a corporate, Ada 
project experience-base. 

Again, the same cautions apply when there are differences in mission domain, design 
methodologies, development process models, and so on. 

A Matter of Perspective. A dozen apples sounds simple enough until your wife fusses 
that the Red Delicious you brought home aren't as good as Yellow; or she needs larger 
apples for baking. 

Size can have simple interpretations targeted for certain audiences. But it must be adapt
able so as to be discernible and describable in more detail for other types of audiences. 
There are particular concerns for which different perspectives on size is important. One 
thousand boxes of apples may be enough information for a shipper, but others involved 
in the process of production and delivery (growers, marketers, auditors, buyers, for 
instance) need to know what kind, from what State, if treated with pesticide, what size, 
picked how long ago, and so forth. For instance, the supermarket manager needs to know 
all these things about a product before determining a price, and whether to put an item on 
sale or not. The premise here is that size without a full description of what that size re
lates to, is not very useful. 

• Afull description is the equivalent of a "valued count" .• 



www.manaraa.com

216 

Consider manufacture and delivery of cereal by ABC Company. ABC produces several 
kinds of cereal in packages of various shapes and sizes - bran cereal, com cereal, and 
software cereal. Some packages have three hundred flakes of cold cereal (or is that code 
cereal), some have three thousand. ABC's operation includes the production and ship
ping processes needed to handle all their different cereals and sizes, and to get those 
products from the host manufacturing facilities and host development computers to the 
target cereal bowls of consumers and to the target serial computers of soldiers in the 
field. 

Again, size has different views for different audiences: how many crates for a shipper; 
cases for a store manager; boxes for a shelf clerk; how many bowls in a box, and what 
kind of cereal, for a consumer. Size must be presented in differing and various formats in 
order to be useful in a variety of contexts. This is exactly the case for software . 

• The software business is no different than any 
other business when considered from 

an economic perspective .• 

Software Size Submetrics. Based on the study described in this paper, the current 
CEMSM Software Size Metric may evolve to an advanced Software Size Index Metric 
that will include components of two submetrics, Software Size Count and Software Size 
Value. The count submetric relates most to application. The value submetric accounts for 
technical quality aspects of the building, implementation and maintenance of the soft
ware. 

There are numerous studies dealing with all the various counting alternatives. This paper 
will not address the specifics to any great detail, but, rather, will cover various issues and 
approaches. An objective of the study is to settle on some initial common counting algo
rithms, promote their use in actual practice, and iteratively-evolve and upgrade based on 
user feedback. 

This multidimensional size measure (Software Size Index Metric) involves the following 
components of its submetrics: 

Submetric: Software Size Count 

• Count: as expressed by physical or logical measures; 
• Repeat_Count: a virtual count 

- a weighted counnhat takes into account reuse of previously developed 
code, arid rework that may not result in any code at all; 

• Variants of these two components include deliverable code, support software, new 
code, replicated code, reused code, modified code, etc .. 



www.manaraa.com

Submetric: Software Size value 

• Producibility includes: 
- effort and capabilities of the software developer; 

217 

- reliability and maintainability (R&M) aspects of the selected development 
processes, design methodology and implementation (e.g., the practices that 
lead to historically proven reliable software); 

- complexity of software design (code and structure); 
- note that reusable components have different value to different applications; 

• Usefulness involves: 
- criticality of function (mission value); 
- understandability; 
- simplicity and ease of use; 
- demand on the target environment to give it a "home"; 
- dependency on computer and human resources to make it work beneficially~ 

• Language Weighting considers: 
- language A does in 5 lines what language B does in 8; 
- multiple language usage, e.g.,-an Ada system with some Assembly; 
- the impact of language-specific implementation requirements for software 

interfaces, system integration and portability issues. 

Software Size Algorithm. To completely describe a software package so that the 
description is useful to a wide audience, it may be necessary to include: 

• a counting measure (SLOC is·in vogue but others need to be considered); 
• value modifiers to discern level of difficulty (such as a complexity measure score 

that addresses Producibility and Usefulness); 

combined with -

• a weighting scheme to account for the specifics of a project (mission-area, 
HOL(s), process model, design methodology, SEI Contractor Capability Maturity 
Level, etc.). 

To develop an algorithm, the various value components will have to be quantified to 
some degree. For instance, formulating and assigning relative scores for complexity and 
effort to describe FORTRAN vs. Ada vs. Assembly. The same for mission domains and 
functional requirements. They have to be classified and weighted based on required 
complexity, reliability and performance. Difficulty of hosting on a particular target 
computer and operating system has to be considered. Skill level of intended users in the 
field 1s a factor - well-engineered software has no value if it is too sophisticated to be 
used and maintained by the intended customer or audience. Cost of producing software 
will also be impacted by resources available to the developer including staff skill level, 



www.manaraa.com

218 

and this is another item to be factored into the algorithm. For instance, what is the value 
to a customer of a module produced by inexperienced personnel vs. a like-function 
module produced by senior people. SEI Contractor Capability Maturity Levels could be 
a starting point for quantifying availabIe-Tesources and capabilities. An Algorithm 
Component Table, as proposed later in this paper, will be employed to help develop the 

algorithm. 

There are a number of side issues. For instance, a complex radar module may contain 
some routine routines such as writing to a file or sorting a list. In such a case, either the 
module could be treated entirely as a complex unit, or the size algorithm could allow for 
partial complexity. Criteria for defining complex units could provide a fuzzy classifica
tion scheme (very complex, complex, difficult, average, ... ), or a scheme using 
definitive classifications based on percentages of complex vs. routine (complexity level 
A, B, C ... ). As another alternative, all modules would be regarded either as complex or 
as non-complex based on the software function, where, either: 

• "complex" is formally defined by system-specific attributes; or, 
• "complex" is informally established primarily based on judgement and evaluation 

of technical management in conjunction with the technical staff and software 
system architect. 

A similar side issue concerns modules containing both newly developed and reused 
code. A scheme is needed to deal with all new vs. part new/part reused, and so forth. 

Side issues such as these may represent unreasonable fine tuning. This investigation will 
evaluate if these are major components of the algorithm or not. 

Another issue. Earlier it was noted that use of multiple metrics may be appropriate to 
deal with different life-cycle activities that need to be measured. But during anyone 
activity, there are also different aspects of that activity that need to be measured and 
managed. So, perhaps simultaneous use of multiple size measures, depending on specific 
management concerns of the moment, is also appropriate. 

For instance, for cost estimating, line counts are what the defense software industry has 
the most experience with, and what many cost estimating models utilize as an input. But 
logical counts may be more useful for determining where and when to assign senior vs. 
junior staff. And for planning milestone schedules, tracking numbers of completed 
modules maybe most helpful. 

Thus, we see a possibility for use of various types or sets of metrics, such as system
based, activity-based, issue-based and problem-based. Each comes into play, as appro
priate, for different purposes. 



www.manaraa.com

219 

Software Personnel 

Software Personnel measures determine: (1) adherence to staffing plans or replans; (2J if 
the planned staffing levels are adequate and remain so as the project progresses; and, (3) 
if proposed qualifications are adequate and continue to be adequate during the project. 

This metric deals, across the life-cycle, with personnel levels and proficiencies of all 
organizations: acquisition office; developer; life-cycle center for software engineering 
and post-deployment support services; and support functions such as QA, IV & V, CM 
and Tech Writing. However, this paper concentrates on the area with the most economic 
impact - the development phase or activity including support provided during the devel
opment. A poorly implemented development will lead to extensive post-deployment sup
port costs. 

Software Development Personnel. A primary program manager area of concern is the 
adequacy of the development team's in-place resources and abilities. Key resources and 
abilities cover: personnel capability; management architecture (structure, procedures, 
communications, reporting practices); and, software development methodology (pro
cesses and standards) and facilities (primarily automated capability) . 

• Pre-award evaluation and on-the-job re-evaluation of capabilities 
are essential because they measure ability to do the job at all. 

let alone doing it well or on time. • 

Of these, the most critical area is personnel capability. Assessment begins with the 
proposal stage where a proposed staff's level and proficiency is evaluated against RFP 
requirements. The concern continues into the development phase as the government 
Contracting Officer's Representative (COR) continually assesses programmatic and 
technical risks by evaluating adequacy of contractor-initiated personnel changes for 
maintaining schedule and for completing the project with required product functionality, 
performance and quality. An example of a monitoring concern would be assessment of 
the contractor's strategy for mitigating turnover, especially of key individuals. 

Software Development Personnel Submetrics. The CEMSM Software Development 
Personnel and Staff Experience Metrics may evolve to an advanced version of a single 
Software Development Personnel Metric that includes both major and minor compo
nents of two submetrics, Software Development Staff Profile and Software Development 
Personnel Qualification. These would be applied to each category of interest - junior 
staff, senior staff, management, QA, CM, IV & V, Life-Cycle Center, total system, prime, 
subcontractor, distributed developments, and so forth. This metric will also be an up
grade based on results of the study described in this paper. It is planned to combine the 



www.manaraa.com

220 

two current CEMSM metrics, and to then factor in personnel proficiency, in order to 

enable a manager to get a total picture of staff capability. Further advances contemplated 
will add metrics for personnel management of acquisition and support phases and activi
ties, as well as for development 

The major;minor division is made along the lines of two principles: the 80/20 rule and 
KIS (keep it simple). Minor components are basically omitted, but not forgotten, from 
the algorithm. They can surface and be utilized for specific situations and at thediscre
tion of management. The 80/20 rule, as applied to a metrics algorithm, states that: "for 
the value-added or cost-benefit expected, it is not worth the efforno capture the least 
significant 20% of components in the algorithm. Even if those components are available 
for the collet"ting, they do not have sufficient impact on the overall algorithm to justify 
the cost of analysis." KIS dictates that other-than-very-significant components requir
ing data that is hard to collect or not readily available, be designated as minor compo
nents. In other words, the difficulty of the effort involved in adding those components to 

the aggregation of the algorithm, does not justify that they be included. 

This highly complex personnel measure (Software Development Personnel Measure) 
must be scaled back to where it is a manageable entity. This study will attempt to do this 
by investigating and then defining reasonable algorithms for the following components 
of the submetrics: 

Submetric; Software Deyelopment Staff Profile - major components 

• Staff Levdrelates to numbers of people and their distribution over time (the 
life-cycle). Part-timers are counted in the true, for instance, two half-timers are equiva
lent to one full-time person. For Staff Level calculations, members of a category are 
considered equivalent to other members of the same category, i.e., a senior = a senior. 
Differences in skills, such as one senior engineer/scientist being Ada trained and the 
other not, are accounted for under the Software Development Personnel Qualification 
submetric. 

• Staff Availability relates to maintaining developer capabilities, including the 
prime-subcontractor relationship, during the entire development. Lack of available per
sonnel (staff spread thin over other contracts for instance) is an indicator of future 
requests for schedule adjustments, learning curve training or subcontracting. "Double 
staffing" is a particular concern during the proposal stage where a contractor may be_" 
bidding on several RFPs. With no way of predicting an outcome, they may very well 
propose the same key personnel assets on more than one offer. 

• Company Retention Rate statistics relate to corporate stability. 



www.manaraa.com

221 

• Staff Variation: Turnover relates to planned and unplanned movement on and 
off a project, which results in creating a number of problems. Two such are learning 
curve impact and loss of corporate memory, for the current project. 

- There is a learning curve impact whenever there is a turnover or any-other 
staffmg change resulting in a new individual coming on board. Such individuals need to 
become familiar with: the work environment; project requirements; normal way-of
doing-business; standards; job ethics and protocols; and, the management climate includ
ing proper response procedures, chain of command and other communications issues. 

- If planned downsizing includes key players, then loss of corporate memory 
and of job-speCific rationale can impact on rework, Reviews and walkthroughs. The 
same is true of unplanned turnover, even more so. This is a critical factor because a 
replacement, even if of a higher proficiency, will require learning curve adjustments. In 
fact, an unplanned loss often times represents an unrecoverable corporate and job 
memory loss. Replacing an individual with another (even of higher proficiency) may not 
recover (immediately, or ataIl) the specific project knowledge held by the lost staff 
member. 

- Unplanned changes such as excessive surges of manpower growth may 
indicate a problem with meeting project schedule because of: requirements or design 
instability; unavailability of full development capability (automated tools, workstations, 
networks, distributed databases, etc.); lack offull project understanding by-the develop
er; and so on. Replacing junior staff with senior staff may indicate the developer is 
having software complexity problems. In_general, adding staff will not help a project in 
trouble unless the cause of the trouble is identified and dealt with. In fact, added staff will 
probably make matters worse because "unenlightened input" can create other problems 
that also must be dealt with. 

. If reassignments occur, the phenomenon of a ramp-up period surfaces. That 
is, even though an individual is now, or had previously been, engaged on a project, being 
reassigned, (for instance, from design to test; or to code/recode the next module) will 
require a certain period of time to re-acclimate to the work Climate and-environment, and 
to PlUject requirements. Even with familiarity with a department or specific task, a 
ramp-up period is required for any returning individual no matter what the reason for 
having left the project previously. Ramp-up periods can range from minor to significant 
and therefore should be factored into the algorithm. Note that, the number of times an 
individual is reassigned on a project is considered a minor component (see Staff Alloca
tion below), while the overall staff proflle of total number of reassignments, and, the in
dividual types of reassignments (using designers to do testing for instance), are 
considered major at this point in time in the study. 



www.manaraa.com

222 

• Staff Variation: Plan/RePlan relates to the baseline against which actuals are 
compared to identify trends and deviations. Plan updating is an extremely important 
function. Updates resulreither when a plan's-deficiencies surface during project imple
mentation, or when a plan is revised as a result of government-contractor action. The 
plan (or replan) in-place at the current time during a project represents the baseline. Each 
plan revision should be uniquely identified such as: Plan, RePlan! ••• RePlann• To re
duce chance of confusion, such formalization should occur only at those points in time 
when significant changes have accumulated. 

- If the schedule is being maintained, but the current staff level is not the base
line level, then the current level may be the correct level - i.e., the planned estimates, 
comprising the current baseline, missed the mark. At this point, consideration should be 
given to updating the staffing Plan or RePlan that is currently in-place. The magnitude 
and number of plan-to-plan changes and baseline modifications are an indicator of 
program understanding and stability (or lack thereof) . 

• Inaccuracies and deficiencies of the original plan become lessons learned 
for conceptualizing and planning the next project .• 

Submetric: Software Development Staff Profile - minor components 

• Staff Mix relates to staff distribution by activity (design, code, test, etc.). 

• Staff Allocation relates to staff movement within a project (e.g., number of indi
vidual reassignments - note that type of reassignment, and total staff reassignments, are 
covered as major components under Staff Variation: Turnover). Capturing data on num
bers of reassignments is cumbersome for there are many situations where individuals are 
"borrowed" on a daily basis to put out a fire in real-time, then return to the primary task 
to which they are formally assigned .. Therefore, tallying of individual reassignments 
may be meaningless, while counting total staff reassignments is necessary as a critique 
of project stability (but may need to be calculated through an averaging function to in
clude borrowed personnel because counting only the total formal reassignments does not 
give the full picture). 

• Manager.'Engineer Rati02 refers to assuring an efficient supervisory structure. 
This is a major component for evaluating RFP responses to assure reasonable levels-of
effort are proposed, but overall is considered a minor component because it is not needed 

'l Note that a number of terms in this paper (such as Repeat_Count, Double·Staffing, and·Man· 

ager:Engineer Ratio, among others) will not be familiar to the reader as the author has used·· 

"description labels" to try to capture particular new ideas and· approaches for future use. Some, such as 

RePlan, are currently included in the work at CECOM. 



www.manaraa.com

223 

past the RFP stage. This is because, after award, all key personnel changes need govern
ment approval anyway, and thus the Manager:Engineer Ratio would be a redundant 

check. By evaluating contractor-proposed levels-of-effort at the proposal stage, the gov

ernment can determine if an excessive number of high-priced management man-hours 

have been included and can request a proposal change as appropriate. During develop

ment, the government representative ean assure the final proposed level is maintained. 

Software Development Staff Profile Algorithm. Development of the algorithm will 

have to proceed in a very orderly manner due to the many issues and components in

volved. The Algorithm Component Table will also be used for this part of the study. 

Staff profile data should be readily available. Important program decisions are tied to 

frequency of collection, and of reporting, of staff data. Understanding of contractor inter

nallabor practices is critical for aggregating this submetric. Note that, as for any deliver

able, metrics data items should be verified through periodic or random auditing to assure 

integrity (that the right data item is reported, and reported correctly). 

Submetric: Software Deyelopment Personnel Qualification 

- major components 

• Proficiency Level (major) relates to the total of individual proficiencies and 

assurance that the baseline average staff level of proficiency is maintained, and includes: 

- advanced education level/type of degree; 

- years with company which relates to firsthand knowledge of, and involve-

ment with, company standards (e.g., Ada Programming Standard) and 

established way of doing software business; also relates to corporate memory 

on similar projects; and, provides added value because loyalty, dedication 

and high morale translate to productivity and a "caring/or quality"; 
- . years of software development experience; 

- years of experience in the mission domain (tactical, communications, etc.); 

- years of experience on similar projects ("similar" can refer, either singly or 

combined, to complexity, size, HOL, development process and environment, 

functionality, etc.); 

- depth of relevant specialty training (design, test, reuse, Ada, SQL, etc.); 

- years of relevant specialty experience. 

• Senior Gate refers to developing the right combination of senior Qualifications for 

the current project. An interesting scenario concerns an employee who is, let's say, 30% 

less productive than another, and would be expected to produce complex software in 

3/10 more time. But the lower productivity person might be a junior engineer not able to 

produce the complex software at all. 



www.manaraa.com

224 

Senior person qualifications must be defined for the job at hand. A 20 year software vet
eran without adequate Ada training is, at best, a junior on an Ada project - or, at worst, 
not acceptable at. all for the project at this time. This again points up how important it is, 
for reasons of staff allocation and technical progress, to define "senior" accurately, and to 

assure a very definite dividing line (gate) between the junior and senior labels - because 
junior people can--have high proficiency scores, but in the wrong areas or for the wrong 
factors. 

• lunior:Senior Ratio relates to creating an efficient technical atmosphere and bal
ance of experienced and inexperienced people (does not apply to management category). 

• Management Experience relates to years of software project management 
experience (only applies to management category). It is preferred that the types of 
projects, on which the experience was gained, be similar. Therefore, two tallies - total 
years of experience and years of similar experience - should be kept. 

• Project Commitment refers to the amount of time (by percentage) an individual is 
assigned to a project. Commitment level should be tracked by activity - requirements 
analysis, design, code, etc .. Staffleverfigures should be weighted not just counted, 
because whether its senior or junior staffers that are being counted impacts on staff profi
ciency rating averages. The proficiency of an individual with a partial commitment to the 
current project also should be weighted to obtain a true proficiency measure. Rather than 
refer to a "halftime person", refer to a "halftime person with a 3.1 proficiency rating", or 
a "halftime Level B senior engineer" (proficiency categories are discussed later). 

Submetric; Software DevelQpment PersQnnel QualificatiQn 

- minor cQmponents 

• Proficiency Level (minor) relates to items not deemed to have an affect on the 
algorithm significant enough to pay for their collection and analysis, and includes: 

- basic education level/type of degree; 
- quality of education ("A" student vs. "C" student; school credentials); 
- professional licenses; 
- total years of software-engineering experience (as contrasted with experience 

specifically on software developments); 
- other specialty training (in technologies not relevant to the current project); 
- on-the-job-training overlaps a bit with experience and is hard to quantify or 

collect; 
- personal attitude/commitment is important but hard to quantify - it can be 

reasonably assumed that most people want to do a good job but a caution is 
necessary because there are a few that can negatively impact a job - a specific 



www.manaraa.com

225 

situation that must be avoided is where a manager is, or is perceived-as, a 
poor leader, arid an undermining negative atmosphere pervades throughout an 
otherwise competent and reliable staff - in such situation, communications 
suffer; 

- depth and breadth of experience can be a revealing set of measures but it is 
difficUlt to collect data with a sufficient level of completeness - this 
component can be characterized as follows: 

depth and breadth relate to 

-- experience working on complex vs. routine-assignments; 
-- experience working on a variety of tasks vs. limited exposure; 
-- having responsibilities vs. being an assembly-line employee; 

some possible measures in this category (: = divided by) 

-- job ratio = years of experience: number of assignments or projects; 
-- tech area ratio = years of experience: number of assignment types 

(test, Ada, etc.); 
-- mission ratio = years of experience: number of project types (tactical, 

radar, etc.) 
-- a further weighting is required to account for long-term vs.-short-term 

assignments; 
-- each of these ratios can be further decomposed to account for difficulty -

of the assignment, and level of assigned responsibility; 

intemretation 

-- high scores indicate stability; 
-- medium scores indicate stability plus diversification;" 
-- low scores can indicate a lack of focus-and career direction. 

Using Proficiency. Individual proficiency measures can be used: 

• during the Source Selection process: 
- to "certify" proposed personnel; 
- to help with the Contractor Capability Assessment process; 

• during development: 
- to critique if personnel changes are equivalent; 
- to accomplish on-ihe-job evaluation of developers to determine if total staff 

capabilities are living up to_pre-award assessments. 

Loss Of Identity. The ultimate use of proficiency measurements is not to critique 
individual personnel. Rather it is to aggregate a cumulative staff proficiency from 
impersonal individual proficiencies (i.e., no names attached). 



www.manaraa.com

226 

First though, an organization would have to define junior and senior category criteria, 
and use those criteria to partition the staff proposed for a project. The criteria would also 
be used during the job to determine personnel assignments and reassignments, both, for 
personnel newly assigned, and for junior staff attaining senior status. 

As mentioned before, the junior-senior partition is extremely important because there are 
a number of ways an individual could attain a specific proficiency rating - i.e., several 
combinations of various education and experience levels could aggregate up to the same 
score but would actually represent different capabilities available to the project. For 
instance, a high-scoring COBOL programmer may be a junior engineer on an Ada 
project until some actual (and substantial) Ada experience is acquired. 

But once categorized, proposed staff bring individual proficiencies to the project, which 
add to, and are considered an integral part of, a total staffing capability available to the 
project - i.e., as part of the whole, individual proficiencies then lose their identity. 
Collected data then refers to movement of-individuals by type (e.g., senior computer 
scientist), not by_name. When movement of specific individuals (by name) is indicated as 
a corrective action,that action belongs to immediate supervisors or department heads, 
not to the higher program or system management levels. 

Thus, proficiency measures are used to track that the baseline level of total staff 
proficiency is maintained throughout the project regardless of movement o/individuals 
from assignment to assignment or project to project. 

Acquired Capability, Innate Ability and Adapt-ability. Total proficiency includes 
individual smarts plus an ability to get smarter - to cope with the next challenge. Thus 
proficiency consists of: 

• acquired capability: 
- basics acquired through formal education and training; and through self

development in an iriherited environment (such as a local education system); 
- expertise acq~ired through experience and on-the-job-training in selected 

environments (such as employment with a defense contractor or a 
government agency); 

• innate ability, its growth and use for adapting to new technological situations. 

How would one assess value, to a development effort, of one employee with specialty 
training in, let's say, Ada and OOD, compared to another employee trained in Ada, SQL 
and 4GLs. Are we comparing software apples with software oranges? The answer is yes 
if considering just the current snapshot. Yes, they are different combinations of acquired 
capabilities for specific areas. One may be applicable, one not. But diversification of 
skills is an indication of being able to tackle, or adapt to, new assignments. 



www.manaraa.com

227 

To know if individuals can be "counted on" for the job ahead, both current capabilities, 

and ability-to-adapt to what comes along, must be gauged. Personnel need to be assessed 

as to their ability to adapt to new technology, new projects, new kinds of assignments -

Le., an overall personnel software engineering capability assessment. Knowing the 

extent to which employees can expand their skills-base becomes important 

Proficiency is a measure of both of these - acquired capability plus adapt-ability. Capa

bility depends on the software proficiency-acquired year after year - i.e., the quality and 

depth of each year's new knowledge, experience and training. Adapt-ability is based on 

innate ability, and the rate of development or use of that ability by the individual. 

Normally, both these factors grow and so a person's proficiency will increase as years go 

by. Thus there may be project management value in assessing proficiency of all assigned 

personnel at least once a year, and also whenever there is key personnel turnover, and 

then rolling those assessments up to new total staff proficiency figures. 

The Pre-School Concept. Let's look at two new employees, one a former "C" 

student, the other an "A". If the "C" employee is a true "C", then his annual productivity 

rate will be less than the "A's". If he's just a school "slacker" but has "A" capabilities, 

then he'll start off slower but eventually reach parity with the "A". It seems that slow 

starters tend to catch up in short order if they possess innate ability. An individual's 

innate ability is an overriding element of the formal education process and resultant 

on-the-job productivity. 

This concept has been validated in the public school system where non-preschool 

children tend to catch up, to those who have attended a preschool~ by fourth grade. It 
appears that this principle also applies to the mission-critical defense system (MCDS) 

world or to any technical field. 

There is an underlying assumption to all this - that an individual possess a positive, 

want-to-produce, attitude or commitment - we find that mosrdo. 

Adapting to Technology. Without adapt-ability, personnel would have to be 

assigned to the same type of job over and over, if such jobs are available. More often 

than not, the next assignment is dissimilar in many respects than the last assignment 

Technology and project requirements' changes over the years mean new system concepts 

are being developed, along with new methods and techniques for implementing them. 

Therefore, new and diverse personnel capabilities are constantly-needed. 

Thus, proficiency level measures have added value when used to assess whether skill

levels are adapting to an ever evolving and ever advancing defense industry technology

base. 



www.manaraa.com

228 

Software Development Personnel Qualification Algorithm. A point system algorithm 
might do very nicely. There are some components of proficiency that may easily be 
quantified. Initial quantifications would then mature along with the algorithm develop
ment and metrics validation processes. For instance, a"C" grade is about a 70%. So why 
not use.7 as a start. A "B" would be .8, etc .. This level of granularity should prove suffi

cient - i.e., .73 or .86 would not be necessary. 

A Bachelor's Degree is about a four year effort, so let's assign a .4; with .8 for a Masters; 

and 1.2 for a Doctorate. Similarly, post-degree years of study could be figured as.l per 
year. A PE could earn an extra .2. An alternative scoring might be to consider a Bache
lors' as equivalent to a year's experience (= .1), a Masters = .2, and a Doctorate = .4. 

Another consideration concerns overlapping of qualifications. Does ten years of software 
engineering experience, where two of them are MCDS-related, mean credit should be 
given for eight years of software engineering + two years of MCDS, or ten + two? 
Overlapping specialty experience on top of general experience amounts to extra credit 

for the special expertise and may be warranted. But such extra credit may only be 
deserved if, for instance in this example, the MCDS experience was meaningful, not 
routine. And, if it was continuous. Two years of piecemeal MCDS tasking spread over 
four or five years may not produce a qualified MCDS software engineer. An investiga
tion of weighting schemes will address these issues. 

An alternative is to categorize personnel by proficiency levels. Such a scheme would 
frrst sort on junior-senior. Then, rather than carry an individual score, each staff member 
would be placed in a proficiency category (say A, B, C) dependent on meeting predeter

mined criteria derived from system qualification requirements. The-resulting metrics 

report presented to a manager would address the adequacy of numbers of individuals in 
each category, rather than tracking every individual proficiency (and annual proficiency 

delta) in order to arrive at an overall score averaged for the full staff. Whether tracked for 
total staffor by activity or skill, staff category levels, verified on an annual basis, may 
have more meaning, to the management function, than staff scoring. 

As previously noted, accurate determination of staff proficiency is a complex subject and 
R&D results will not be achieved easily. However, the result, down the road - i.e., being 
able to easily quantify staff qualification measurements in a structured way so as to 
quickly determine capability on a project (and therefore help determine the feasibility of 
the project's success) - would provide a benefit to future government software procure
ments for large, complex systems. As for all algorithm development in this study, use 
will be made of the Algorithm Component Table. 



www.manaraa.com

229 

Software Productiyity 

The size and value of a software project, and the size and proficiency of the staff 

assigned to the project, determine the average productivity being applied to the project. 

The average productivity is a weighted composite of individual productiveness. 

There are three aspects of individual productivity that are of interest to a software 

manager: 

• a person's relative productivity (compared to another person) [current 

capability ); 

• a person's complexity-weighted productivity (where the complexity/criticality of 

the project impacts on both the quality and the rate of an individual's output) 

[actual contribution). 

• a person's productivity increase [growth potential) over time; 

Care should be taken to assess productivity within the context of the current technical 

area of interest A productive database designer may be unproductive on a radar algo

rithm package development. But assessment should be on an annual basis because indi

viduals will increase their capabilities rapidly through experience, and through formal, 

and on-the-job, training. 

Productivity Limits. Productivity eventually reaches a saturation point sometime during 

the career of a professional. There is a trade-off on new-skills-for-old which stabilizes 

productivity. Even as very senior employees pick up new specialty skills and capabili

ties, productivity is not likely to increase proportionally because either: 

• they become "rusty" or lose productivity in the older specialties from lack of use 
of those skills, or from obsolescence of the technology; or, 

• the older specialties are not applicable to current projects; or, 

• technical advances are so profuse that individuals find it hard to find the time to 
keep up; or, 

• its just simply a matter of how much a person can accomplish in a day's work. 

As a result of this "trade-off' of skills, average productivity eventually stabilizes some 

years into a career, although its technical character will change. An average is used 

because, even years into a career, productivity dips slightly at those times when new 

skills are being learned, only to rise slightly subsequently. 

Another consideration is potential decrease of productivity due to loss of motivation 

usually related to job environment and morale problems. A company can make a big 

difference by constantly upgrading facilities and conditions, or by simply paying 

attention to the "factory atmosphere" so as to prevent "stagnation". 



www.manaraa.com

230 

Man-.hour Depth. Man-hour counts should consider value of the effort expended. Dif

ferent individuals produce differentliduring a fixed time period. The "count" aspect 

must be taken one step further to address value, to where it is understood that 

man-hours have depth. Depth is comprised of a number of facets that make up an 

individual's time: 

• analysis time for understanding and evaluation; 

• creativity time for formulation of ideas and innovations; 

• production time for writing it down or recording results; 

• assurance time for verifying both the ideas and their implementation; 

• overhead time related to organizational and administrative activities. 

Competent Man-hours. If a program is orders of magnitude larger than another pro

gram, then of course, you would expect to see a great difference in the number of 

man-hours needed to produce the two packages. But, the difference is not linearly pro

portional to the size difference. Rather, it is very dependent on: 

• the abstractness of the functional and performance requirements; 

• The complexity of the software implementation of those requirements;, 

• the modularity of that implementatioQ; 

• the qualifications of the organization for building that implementation. 

For software systems with similar line counts, the "value" of the software is a greater 

factor than physical size for determining the number of required man-hours, and those 

man-hours must have corresponding value or man-hour depth (very productive vs. 

limited-productivity personnel performance - it is futile to assign relativelyJnexperi

enced people to a complex task, no matter how much time you give them to accomplish 

it). The equivalent "competent man-hours" affect a number of important economic areas: 

• level of staff qualifications needed to produce the software; 

• level of resources required to apply the product and maintain it over an extended 

period; 

• benefits of the results to the user . 

• Tile point is that man-hours relate to sheer line count, but 

competent man-hours relate to producing "value-able", 

or cost-beneficial and usable software .• 

An example of how to use this concept is illustrated with the following scenario. Say 

senior people with a proficiency "score" of 1.0 provide one man-hour's worth of effort 

per hour. Individuals with a score of 2.0 provide 1.2 man-hours of effort each hoUT. A 

contractor has to assign senior capability to a task estimated to be a 1,000 man-hoUT ef

fort. Competent man-hours scoring would enable assignment of either: five senior people 

with 1.0 scores at 200 hours each; or four seniors with 2.0 scores at 208 hours each. 



www.manaraa.com

231 

So various combinations of proficiencies could result in a contractor needing less staff. 
This is important considering the shortage of qualified software engineers in the field 
today. Also, the salary outlay for the staff with fewer but higher qualified people would 
be roughly equivalent to the staff with more individuals of less proficiency. But, the 
savings on employee benefits packages and administrative costs would be reflected in 
lower bids for defense contracts. And the quality of the required products would not be 
compromised. 

"Countless" Hours. Here is an interesting scenario. Employee A produces 100 lines of 
code in a week, but they fail testing. The unit comes back to coding and A spends anoth
er week in finding a small, but key, missing or erroneous portion of code. So A has pro
duced 95% of the unit in one week and 5% in another week. What is A's productivity? 
One-hundred lines in two weeks? Well, what if the unit came back and A was busy or re
assigned to another task so the rework went to employee B, who arrives at the same solu
tion.Now A has produced unusable code and B has produced-almost no code. But the 
package works. Can we even determine B's productivity? Does A have mu: productivity 
under this circumstance? 

Are lines of code a measure of productivity? It seems the lines must be assigned a value 
reflecting usefulness and efficiency. And, complexity and criticality of the function being 
coded must also be factored into the determination of how much productivity was 
achieved? If the 95% usable software produced by A in the above example was all the 
routine code, and B produced the solution with only 5% of the code, but that 5% was 
complex code, then isn't B's productivity greater? And even more so if A had spent time 
on the problem but couldn't solve it. Which effort had greater impact (was more produc
tive) in producing a usable package? 

This points up the concern for being able to measure rework turnaround-time and 
rework effort where few lines may be created or changed during many man-hours of 
analysis. In fact, many productive efforts actually result in lines being-deleted. This is an
other example where simple line counts and man-hour counts are not very good mea
sures of productivity - aspects of value must be considered. What is needed are virtual 
counts of productive time that measure value of the effort involved. 

This scenario plays frequently during maintenance activity where many hours of trouble
shooting and rework may result in just a few line changes. This is also true when, during 
development, as a software system progresses toward qualification and acceptance, mod
ules are sent back for rework as errors and omissions are found. Note that the principles 
of measuring productivity value apply across all activities of the life-cycle, not just 
coding. 



www.manaraa.com

232 

Software Productivity Increase. Let's look at individual productivity growth. As a 
reasonable, but hypothetical, starting point, let's say a technical person's normal software 
engineering productivity jumps sharply every year for the first few years out of school, 
but then the annual productivity increases start to flatten out and finally stabilize (with a 
+ or - delta) at some point in a person's career. 

Following is aProductivity Increase Table for an employee starting with an arbitrary 
initial productivity rating of 1.000. The increases reflect, through some TBD algorithm, 
the employees annually acquired new knowledge, experience and fomal training. 

YEAR 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 

I 
I 

V 

Productivity Increase Table 

ANNUAL SW'ENG 
PRODUCTIVITY 
RATING 

1.000 
1.200 
1.440 
1.728 
1.987 
2.285 
2.514 
2.765 
2.903 
3.049 
3.201 
3.361 
3.529 

" 

ANNUAL SW ENG 
PRODUCTIVITY 
INCREASE 

20% 
20 
20 
15 
15 
10 
10 
05 
05 
05 
05 
05 
00 
00 

00 
00 

If this represents close to a real-world scenario, it means technical productivity over a 
long career can be expected to grow to 3-4 times greater than a person's initial capability. 



www.manaraa.com

233 

This is within the ballpark of the results of aNASA study3 on similar factors. That stUdy 
showed (Table 3-3, reproduced below) that 2.3 times more effort was needed when per
sonnel had to deal with new application domains and new capabilities (software engi
neering environments). To put it another way, 2.3 times more productivity can be 
expected when application and development environments are familiar entities. 

PROJECT 
TYPEa 

old 
old 
new 
new 

Table 3-3. Complexity Guideline 

ENVIRONMENT 
TYPEb 

old 
new 
old 
new 

EFFORT 
MULTIPLIER 
1.0 
1.4 
1.4 
2.3 

• Application, e.g., orbit detennination, simulator. The project (or portion of the project) type is old when the 

organization has more Than 2 years experience with it. 

b Computing environment, e.g., mM 4341 , VAX 8810. The environment type is old when the organization has 

more than 2 years of experience with it on average. 

Also, when personnel had ten years of experience in an application domain, then 5.2 

times more productivity could be expected (see Table 3-4, reproduced below). 

Table 3-4. Development Team Experience Guideline 

TEAM YEARS OF 
APPLICATION EXPERIENCEa 

10 
8 
6 
4 
2 
1 

EFFORT 
MULTIPLIER 
0.5 
0.6 
0.8 
1.0 
1.4 
2.6 

• Average ofteam member's years of application experience weighted by member's 

participation on the team. Application experience is defined as prior work on similar 

applications, e.g., attitude and orbit detennination. Member's participation is defined 

as time spent working on the project as a proportion of total project effort. 

3 NASA SEL Manager's Handbook for Software Development, SEL-84-101, Revision 1, Nov 90 



www.manaraa.com

234 

Productivity Value. But what about the quality of productivity? Does A do as good a 
job as B? Can A even do the job? Again, this is where the notion of "value" comes in. 
The value of the software being produced (its complexity, utilization, functionality, 
criticality, etc.) must be weighed in any determination of the real productivity of an 
employee. What has it cost in man-hours? Productive output of more experienced em
ployees will make up for the extra cost represented by their higher salaries. Either they'll 
produce the same product with fewer people, or produce the same product in less time, or 
produce more in the same amount of time. And the product. will be of higher quality. 

An added benefit to a private sector defense contractor is that a highly efficient and pro
ductive staff qualifies the company for more lucrative competitive awards. 

A further application of the ideas of value as discussed in relation to size and staff 
extends naturally to productivity. One employee produces 1000 lines of complex soft
ware, another produces a 1500 line module of routine software in-the same period of 
time. To know the relative productivity, one must determine how much more complex 
one module is than the other. To compare value, one must determine how much more 
useful one module is than the other. This can present a dilemma since the package imple
menting the less complex function maybe used in a more critical application. The first 
job is important but the second may be critical and the bottom line is that you certainly 
would want to see more proficient personnel working that second problem. 

All:orithm Develwment 

Use of "living" Algorithm Component Tables is contemplated for this study (see next 
page). The intent is to keep tables as representations of algorithms which mature as table 
contents are upgraded periodically. It is anticipated that ample size, staff, proficiency and 
productivity data is available on completed projects, so that initial algorithm formulas 
can be developed, and then early validation efforts can be implemented. Sensitivity 
analyses can then be performed. For instance, by comparing projects of similar size and 
complexity, the affect that staff proficiency had on productivity can be evaluated. Initial 
identification of major and minor algorithm components can then be achieved. 



www.manaraa.com

ALGORITHM COMPONENT TABLE 

Components 

Majors X 
Y 
Z 

Minors 1. 
2. 

Weight 

A. Is this component important? 

ABCDEFG 

B. Is this component important but a minor part of the equation? 
C. Is this component trivial? 
D. Is this component hard to collect? 

235 

H 

E. Does this component give added benefit and/or information worth the cost to collect it 
(80/20 rule)? 

F. Does this component need feedback or further analysis in order to determine its 
importance? 

G. Is this component weighted correctly/reasonably as determined by previous 
analysis/trial/use? Or is it an estimate/guess? 

H. Provide narrative rationale for current weighting, or with new suggested weightings 
(narratives for A thru F may also be provided). 

Conclusion 

There is great need to derive an initial set of commonly understood and utilized measures 
to address the issues of size and staff. Measurement of various aspects of these two enti
ties is extremely important to managers for planning, estimating, tracking and evaluating 
large, complex software systems. Besides productivity, managers are also greatly inter
ested in progress, stability, supportability, quality, resource utilization, and so on. Size 
and staff metrics provide insight into these various areas of software acquisition, devel
opment and support. The benefits will accrue both to current projects and future efforts. 
It would be beneficial if this problem were tackled in a coordinated manner by research
ers from both the government and private sectors of the defense software industry. The 
stress should be on simplicity, cost-effectiveness, and timely insight. 



www.manaraa.com

AN ECONOMIC ANALYSIS MODEL FOR DETERMINING 

THE CUSTOM VERSUS COMMERCIAL SOFTWARE TRADEOFF 

Michael F. Karpowich 

Thomas R. Sanders 

Robert E. Verge 

Science Applications International Corporation (SAIC) 

3045 Technology Parkway 

Orlando, Florida 32826-3299 

INTRODUCTION 

Recent cuts in defense spending have prompted 

managers to seek to conserve resources in many innovative 

ways. Whereas historically a program development effort 

would make only marginal efforts to borrow techniques and 

take advantage of technology transfers from mature 

programs, today's programs are attempting to minimize the 

"reinventing the wheel" behavior. Along those lines, 

the modern program manager has additional decisions to 

make concerning how to satisfy his application software 

requirements. Before deciding in which software language 

and environment his program will be developed, he should 

determine just how much software he must develop, and how 

much may have already been developed for him; i.e. he 

must determine whether a commercially available software 

package would satisfy some of his requirements. Today's 

competitive environment has led to the creation of 

several commercial off-the-shelf (COTS) software products 

that are capable of satisfying very large software system 

requirements, often at a fraction of the cost of newly

developed software projects. Subsequently, each program 



www.manaraa.com

238 

manager owes it to himself to investigate these products 

for use in his program. More recently, government 

customers are requiring an economic analysis to help 

choose the preferred software alternative. 

The cost analysis model presented here has been 

developed by SAIC to assist in the custom versus commer

cial software tradeoff decision. The Lotus-based model 

offers a disciplined method of assessing relative life

cycle costs by incorporating a comprehensive SAIC

developed Work Breakdown Structure (WBS), an embedded 

software development parametric estimating model (REVIC), 

and the concept of net present value in a user-friendly 

format. In addition, the model is self-documenting and 

auditable, allowing for quicker "what-if" exercises to be 

performed. The model truly is a necessary tool for our 

changing times. 

Modules 
(Custom or COTS) 

Figure I 

TOTAL 
SOFTWARE 

SYSTEM 

Figure 1 describes the software tradeoff as assess

ing "modules" of a total system software effort. That 

is, while the top-level portions of the software system 

must be uniquely developed for the specific program, the 



www.manaraa.com

239 

software modules (Word processor, Database Management 

System, Spreadsheet, etc.) can be either purchased or 

developed, depending upon which is more cost-effective. 

The tradeoff process insists that the analyst assess 

functionally-equivalent custom and COTS software prod-

ucts. To assure this functional equivalence, the COTS 

software may require some custom software "hooks" to 

allow the COTS package to link with the rest of the 

software system. The model's Work Breakdown Structure 

(WBS) explaining these intricacies is described in more 

detail later in this paper. 

BACKGROUND 

SAIC has performed a series of software tradeoff 

studies in the past ten years for programs ranging from 

simulators to major weapon systems. As a result, the 

authors have assessed numerous COTS software packages as 

well as several development software parametric estimat

ing models such as COCOMO, PRICE S, and REVIC. While 

each parametric model and COTS software package contrib

utes part of the picture, SAle recognized that a single 

tool that provides a thorough, comprehensive analysis 

addressing all the life-cycle cost impacts of the custom 

versus commercial software cost tradeoff was lacking. 

THE MODEL 

The primary purpose of SAlC's Software Cost Tradeoff 

Model is to compare costs of a custom software module to 

those of a chosen functionally equivalent COTS alterna-



www.manaraa.com

240 

tive. The model is logically laid out in three parts. 

Part One assesses the COTS software alternative using 

vendor inputs, factors, and engineering assessments as to 

hardware and interface software to estimate costs. Part 

Two employs the REVIC parametric software estimating 

model to estimate the costs of the custom software. 

Finally, Part Three compares a chosen COTS alternative to 

the custom software from a life-cycle cost viewpoint, 

incorporating the concepts of time-phasing and net 

present value. 

The Model is written in Lotus version 2.1 and 

requires an IBM-PC 286 or compatible machine running at 

16 MHz for optimal operation. 

Work Breakdown Structure 

To guarantee a thorough cost analysis, SAIC devel

oped and embedded in the model a comprehensive WBS. This 

WBS is used as an accounting checklist to insure all 

conceivable costs are addressed. While functionally 

similar, many COTS software packages require unique 

interfaces (hardware and! or software) that the model must 

consider. Similarly, performing a cost tradeoff between 

commercial and custom products is not as easy as "swap

ping" the cost of a COTS software package for that of the 

developed software, and vice versa. Seldom is a commer

cial software product alone "functionally equivalent" to 

a custom product; some amount of interface hardware or 

software is almost always required. The WBS's for both 

commercial and custom software are listed in Figure 2. 

While the WBS is intended to be rather generic, some 

elements may seem uncommon. Development Kits are those 



www.manaraa.com

Commercial 
Acquisition 

Development Kits/Licenses 
Run-Time Kits/Licenses 
Interface Design 

Hardware 
Software 

Training 

Custom 
Acquisition 
Systems Engineering 

Preliminary Design 
Critical Design 
Code & Debug 
Integration & Test 
Development Test 
Documentation 
Training 

Maintenance Maintenance 
Software Service Agreements Code Updates 

Development Systems Debugging 
Run-Time Systems System Design Updates 

Interface Software Maintenance Training 
(identical to custom 
software maintenance) 

Training 

Figure 2 

241 

COTS software packages purchased for use during a 

program's development testing phase. They are generally 

more robust and are supported by a greater level of 

maintenance than the Run Time Kits which are purchased 

for a program's production phase. Interface design 

software represents the "hooks" required to allow COTS 

software to operate with the rest of the system. These 

hooks may be required to allow the COTS software package 

to operate with the system software, the system hardware, 

or both. The other WBS elements are fairly common and 

straight-forward. 



www.manaraa.com

242 

The WBS should insure that all cost elements are 

addressed. While this may be relatively easy in the case 

of custom software, the large number of different vendors 

providing commercial software often provide peculiar 

licensing, 

options to 

service, or interface hardware and software 

consider. The analyst must make sure to 

define functionally equivalent, "apples-to-apples" COTS 

and custom products. 

Ground Rules and Assumptions 

Although the model is designed to accommodate many 

different types of alternatives, a small set of model 

assumptions do apply. These assumptions include: 

1) Custom software will be written in the Ada 

development environment. 

2) Candidate commercial software will operate on 

the available hardware, even if some custom 

software "hooks" must be developed to facili

tate operation. 

3) All required interfaces to create functional 

equivalence of tradeoff alternatives are iden

tified. 

4) Enough information is known about the custom 

software such that accurate software sizing 

estimates can be made. 

5) An expenditure profile for each WBS can be 

created. 



www.manaraa.com

243 

Model Construction 

The Software Cost Tradeoff Model is designed to 

oper~te in both an automated and manual mode. 

it is laid out in five discreet areas in 

spreadsheet. Those areas include: 

As such, 

the Lotus 

1) Automated Screen Display That spreadsheet 

section where data entry screens are displayed 

in the automated mode. 

2) Automated Mode Program Code - The spreadsheet 

section containing the automated entry program 

macro codes. 

3) Database - The spreadsheet section where input 

data is stored and cost computations made. 

4) Output Form - The spreadsheet section contain

ing the model output form. 

5) Net Present Value - The spreadsheet section 

where net present value computations are made. 

Figure 3 describes these spreadsheet ranges. 

AUTOMATED PROGRAM 

SCREEN CODE 

(a1..g113) (bal .. bi285) 

DATABASE 

FORM 

(bzl .. ct84) 

Figure 3 

OUTPUT 

DISPLAY 

(aal .. ak78) 

NPV 

CODE 

(db1..dn162) 



www.manaraa.com

244 

Commercial (COTS) Software 
Acquisition 

Development Kits/Ucenses 
Run-TIme Kits/Ucenses 
Interface Design 

Hardware 
Software 

Training 

Maintenance 
Software Service Agreements 

Development Systems 
Run-T"lme Systems 

Interface Software Maintenance 
Training 

Custom Software 
Acquisition 
Maintenance 

Variables 

V = Vendor quote (unit cost) 
S = Qty. of Systems 
B Contractor Burden 
p = # of students in training class 
p = # of training sessions 
C = Training session cost/student 
Y = # of years 
MMNOM = Nominal manmonths 

Table 1 

COST MODEL EXPRESSION 

V·S·B 
V·S·B 
6.8 (KDSI)·941 • 1.34 • OMOD • DLR • HMM 

MMNOM • MMOD • ACl'· MLR • HMM • Y 
p·p·C 

6.8 (1<051)·941 • 1.34 • DMOD • DLR • HMM 

MMNOM • MMOD • ACl' • MLR • HMM • Y 

DMOD = Development environmental modifier 
MMOD = Maintenance environmental· modifier 
ACT = Annual change traffic 

} (See Env. 
Modifier Screen) 

DLR = Development phase composite labor rate 
MLR = Maintenance phase composite labor rate 
HMM = Hours per manmonth 

Model Operation 

The model computes costs using WBS Cost Model 

Expressions. Cost Model Expressions are formulas for 



www.manaraa.com

245 

estimating the cost of each WBS element; applicable 

expressions are illustrated in Table 1. 

Variable inputs are provided by the user by select

ing either the automated or manual input method from a 

main menu screen. Selecting the automated mode will 

display a series of user friendly screens (See Figures 4 

through 8) requesting cost model expression input 

variables and a calendar-year expenditure profile. Upon 

entering these inputs, the model transfers them to the 

database and displays the next WBS element for data 

entry. (Note that Figs. 4 - 8 represent Data Entry 

Screens for the custom software "hooks" required for the 

COTS to be functionally equivalent to custom software.) 

PHASE: COTS ACQUISITION LEGENp 

COST' [ ]- DEFAULT 
CATEGORY: TRAINING { }- CALCULATED 

INTERNALLY 
)-= INPUT FORMAT COST 

EXPRESSION: P * F * C 

NQN-BEvIC 
1 
2 
3 
4 
5 
6 
7 

YAB :.u:.tI..Ei ~ 
V VENDOR QUOTE PER UNIT ($) 
S I SYSTEMS 
B CONT BURDEN [1.46] 
Y I OF YEARS 
P I OF PEOPLE IN EACH TNG CLASS 
F I TNG SESSIONS 
C TNG SESSION COST PER PERSON 

Figure 4 

The alternative manual input method takes the user 

directly to the database, where inputs are made by 

scrolling through each WBS element. Cost calculations 

are automatically made in the database using the provided 



www.manaraa.com

246 

PHASE: COTS ACQUISITION 

COST CATEGORY: SOFTWARE INTERFACE 

COST EXPRESSION: (6.8* (KOSI)' 941 )OMOO*OLR*HMM*1.34 

~ 
8 
9 

10 
11 
12 
13 
14 

PHASE: 

YAB 
KL 

KMP 
KH 

OLR 
HMM 
ACT 
MLR 

nn.E; 
KOSI LOW ESTIMATE 
KOSI MOST PROBABLE ESTIMATE 
KOSI HIGH ESTIMATE 
OEV LABOR RATE [S67/HOUR] 
HOURS PER MANMONTH [152] 
ANNUAL CHANGE TRAFFIC FACTOR (.xx) 
MAl NT LABOR RATE [S42/HOUR] 

Figure 5 

COTS ACQUISITION COMPOSITE MULTIPLIER: 

COST CATEGORY: SOFTWARE INTERFACE 

COST EXPRESSION: (6.8* (KDSI)' 941) DMOD*DLR*HMM*l. 34 

1.00 

ENVIRONMENTAL FACTORS ~ ...l.- ...lL .L .Jlli ..Xli SELECTEP 

Analyst Capability? 1. 46 1.19 1.00 .86 .71 .71 
Programmer Capability? 1.42 1.17 1.00 .86 .70 .70 
Applications Experience? 1.29 1.13 1.00 .91 .82 .82 
Virtual Machine Experience? 1.21 1.10 1.00 .90 .90 .90 
Program Lang Experience? 1.14 1.07 1.00 .95 .95 .95 
Execution Time Constraints? 1.00 1. 00 1.00 1.11 1.30 1.66 
Main Memory Constraints? 1.00 1.00 1.00 1.06 1.21 1. 56 
Virtual Machine Volatility? .87 .87 1.00 1.15 1.30 1.49 
Computer Turnaround Time? .79 .87 1.00 1. 07 1.15 1.15 
Requirements Volatility? .91 .91 1.00 1.19 1.38 1.62 

Figure 6 

input data. Once all desired WBS Cost Model Expression 

inputs are provided, the model automatically completes an 

output form displaying the custom versus COTS software 

cost tradeoff. 



www.manaraa.com

247 

PHASE: COTS ACQUISITION COMPOSITE MULTIPLIER: 1.00 

COST CATEGORY: SOFTWARE INTERFACE 

COST EXPRESSION: (6.8* (KOSI) .941 ) OMOO*OLR*HMM*l. 34 

ENVIRONMENTAL FACTORS 

Required Reliability? 
Database Size? 
Complexity ot the Code? 
Is It Written tor Re-Use? 
Modern Proqramminq Pract? 
Use ot Sottware Tools? 
Manaqement Reserve? 

Security Required? 

..JZL ....l..... ..JL 

.75 .88 1.00 

.94 .94 1.00 

.70 .85 1.00 
1.00 1.00 1.00 
1.24 1.10 1.00 
1.24 1.10 1.00 
1.00 1.20 1.40 

CI.ASSIFIEP 
1.10 

Figure 7 

..JI... ..Jlll ..D 

1.15 1.40 1.40 
1.08 1.16 1.16 
1.15 1.30 1.65 
1.10 1,30 1.50 

.91 .82 .82 

.91 .83 .73 
1.60 1.80 2.00 

!!NCI.ASS IE u:p 
1.00 

PHASE: COTS ACQUISITION 

COST CATEGORY: SOFTWARE INTERFACE 

AMOUNT AMOUNT 
~ <l) ~ (%) ~ 

YR 1 YR 8 YR 15 
YR 2 YR 9 YR 16 
YR 3 YR 10 YR 17 
YR 4 YR 11 YR 18 
YR 5 YR 12 YR 19 
YR 6 YR 13 YR 20 
YR 7 YR 14 

Figure 8 

SEU:CTli:P 

AMOUNT 
< l) 

Figure 9 graphically depicts the model operation by 

displaying the interaction of the five areas described 

under model construction. 

An important aspect of the model is the ability to 

review the outputs in both constant and discounted 



www.manaraa.com

248 

Database 

was Elements ... > 

Automated Variables 

Screen ." 
Display 

...------.."." / 

1 r / // / 
, 

2r 
Ecreen 3 r 
, 

/ 

Automated Mode 
Program Code 

Figure 9 

Output 
Form 

Net 
Present 
Value 

dollars. If the user provides a Calendar Year spread for 

each WBS element, the output form will provide both a 

detailed constant year cost comparison and a summary 

level discounted dollar cost comparison. The difference 

will incorporate the concept of Net Present Value, which 

says that the further out in time costs are incurred, the 

lower those costs are in present value terms. 

CASE STUDY 

To illustrate the use of the model, the authors 

compared a commercially available DataBase Management 

System (DBMS) software product to a DBMS product devel

oped in the Ada environment. They followed a disciplined 



www.manaraa.com

249 

approach to defining the estimate inputs and subsequent 

outputs, and obtained some interesting results. 

In Part One, estimating the life-cycle cost of the 

commercial (COTS) product, software engineers determined 

that some amount of developed code was required to 

provide the "hooks" such that the commercial package 

could be integrated into the remainder of the system 

software; software engineers provided software sizing 

estimates for this custom software. In addition, Run

time licenses surprisingly turned out to be almost as 

expensive as Development licenses, based on vendor 

quotes. We also discovered that the vendor was unwilling 

to provide discounts on long-term maintenance agreements. 

Software engineers provided sizing estimates and 

environmental modifiers for the functionally equivalent 

developed software written in Ada in Part Two of the 

model. Using the REVIC estimating model, the acquisition 

costs as well as the maintenance costs were estimated. 

Since the government customer was assumed to have the 

responsibility for maintaining the software, a different 

set of environmental modifiers was used to estimate 

maintenance costs. 

By way of comparison in Part Three, the commercial 

software was much less expensive to acquire but much more 

expensive to maintain than the custom software over the 

life cycle. While total life-cycle costs in constant 

dollars were very close, the larger maintenance cost for 

the commercial software is spread over the 15-year 

maintenance life-cycle. When the net present value 

analysis was performed, the commercial product was 

clearly the lowest cost option. Figure 10 displays these 



www.manaraa.com

250 

Comparitive Analysis 

4,00 

3,00 

$ K 
(FY 91$) 

2,00 

1,000 

1.-_____ COTS 

(S38,887 KI 

L.. _ _ _ _ _ _ _ _ _ _ _ _ - Custom 

5 10 

YEARS 

Comparative Analysis 

15 

(S37,863 KI 

20 

COTS SOftyare Custom sotty,e. Varianc· 

Total LCC (Constant SI $38,887,000 $37,863,000 $1,024,000 

Total LCC (Discounted$1 $14,022,000 $20,804,000 ($6,782,0001 

Figure 10 

relative costs. 

ISSUES 

Some important issues uncovered in developing this 

model may not be readily apparent and deserve special 

exposure. 

1) Accurately identify the COTS interfaces - COTS 

software packages can seldom be used for system require

ments without designing custom software interfaces to 



www.manaraa.com

251 

link the various custom and COTS packages together to 

form the system software. Insure that these interfaces 

are accurately defined; custom software development is 

generally much more costly than purchasing COTS software, 

so the interface software may be more costly than the 

entire COTS package! 

2) The COTS versus custom software relative Life 

Cycle Costs can be misleading unless the Net Present 

Value concept is employed. In general, the further out 

that cost is incurred, the lower that cost is in present 

value terms. Thus a relatively large maintenance cost 

may not be as large as you may think if it is incurred in 

the out years. 

3) The maintenance portion of many software 

estimating models has historically taken a back seat to 

the primary focus of estimating software development 

costs. The user should be aware that there are often 

different environmental modifiers that must be considered 

along with different labor categories in the maintenance 

phase. For example, a requirement for high software 

reliability in the development phase will drive up the 

development cost (large development environmental 

modifier); however, highly reliable software is easier to 

maintain, and maintenance costs are driven down (small 

maintenance environmental modifier). Likewise, while 

highly reliable software requires highly qualified 

developers, its maintenance may not require personnel of 

the same skill and salary level. 



www.manaraa.com

252 

CONCLUSION 

The Software Cost Analysis Model described here 

provides a thorough, comprehensive method of analyzing 

the cost tradeoffs of commercial and custom software 

products. The model's user-friendly self-documenting 

characteristics make it ideal for performing quick "what

if" studies. By considering life-cycle impacts of spend 

profiles and net present value analysis, the lowest cost 

option may be different than the "obvious" choice. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFA1B:2005
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (sRGB IEC61966-2.1)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
    /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
    /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
    /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
    /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
    /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
    /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
    /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
    /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
    /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
    /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200039002000280039002e0034002e00350032003600330029002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003100200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




